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Abstract-Hidden Markov Models (HMMs) are one of the 
most popular and successful models in statistics and machine 
learning for modeling sequential data. However, one main issue 
in HMMs is the one of choosing the number of hidden states. 
The Hierarchical Dirichlet Process (HDP)-HMM is a Bayesian 
non-parametric alternative for standard HMMs that offers a 
principled way to tackle this challenging problem by relying 
on a Hierarchical Dirichlet Process (HDP) prior. We investigate 
the HDP-HMM in a challenging problem of unsupervised 
learning from bioacoustic data by using Markov-Chain Monte 
Carlo (MCMC) sampling techniques, namely the Gibbs sampler. 
We consider a real problem of fully unsupervised humpback 
whale song decomposition. It consists in simultaneously finding 
the structure of hidden whale song units, and automatically 
inferring the unknown number of the hidden units from the Mel 
Frequency Cepstral Coefficients (MFCC) of bioacoustic signals. 
The experimental results show the very good performance of 
the proposed Bayesian non-parametric approach and open new 
insights for unsupervised analysis of such bioacoustic signals. 

I. INTRODUCTION 

Hidden Markov Models (HMM) [1] are one of the 
most successful models in statistics and machine learning 
for sequential data including acoustic recognition [1]. The 
usually used algorithm to learn the model is the Expectation­
Maximization (EM) algorithm [2], also known as Baum­
Welch in HMMs [3]. One main issue in HMMs is the one 
of selecting the number of hidden states, required by EM. 
This model selection problem can be addressed by cross 
validation techniques or information selection criteria such 
as the Bayesian Information Criterion (BIC) [4], the Akaike 
Information Criterion (AlC) [5], the Integrated Classification 
Likelihood criterion (ICL)[6], etc. which select an HMM 
with a number of states from a pre-estimated HMMs with 
varying number of states. The Bayesian Non-Parametric 
(BNP) approach for HMMs [7] gives a well-principled 
alternative to standard HMMs. This alternative is known as 
the infinite HMM (IHMM)[8]. It provides a principled way 
to infer the number of states from the data in an automatic 
way as the learning proceeds. The BNP approach for HMMs 
relies on Hierarchical Dirichlet Process (HDP) to define a 
prior over the states [7]. It is known as the Hierarchical 
Dirichlet Process for the Hidden Markov Models (HDP­
HMM) [7]. HDP-HMM infers it from the posterior distribu­
tion considered the number of states as a hidden parameter. 
The HDP-HMM parameters can be estimated by MCMC 
sampling techniques such as Gibbs sampling [7]. Note that 
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the standard HDP-HMM Gibbs sampling has the limitation 
of an inadequate modeling of the temporal persistence of 
states [9]. This problem has been addressed in [9] by relying 
on a sticky extension which allows a more robust learning. 
Other solutions for the inference of the hidden Markov 
model in this infinite state space models are using the Beam 
sampling [lO] rather than Gibbs sampling. 

We investigate the BNP formulation for the HMM, that is 
the HDP-HMM into a challenging problem of unsupervised 
learning from bioacoustic data. The problem consists of 
extracting and classifying, in a fully unsupervised way, 
unknown number of whale song units. We use the Gibbs 
sampler to infer the HDP-HMM from the bioacoustic data. 

The paper is organized as follows. In Section II, we give 
a brief description of the finite Hidden Markov Model. Then, 
Section III describes the infinite Hidden Markov Model 
and Subsection III-A introduces the Hierarchical Dirichlet 
Process. A representation of the Hierarchical Dirichlet Pro­
cess in terms of the Chinese Restaurant Franchise (CRF), 
is given in Subsection III-B. Section III-C describes the 
generative process, and Section III-D describes the Gibbs 
sampling algorithm used for the inference. Finally, Section 
IV presents the experimental results for the humpback whale 
song signals. 

II. THE HIDDEN MARKOV MODEL 

The finite Hidden Markov Model (HMM) [1] is very pop­
ular due to its rich mathematical structure and it stability to 
model sequential data, namely acoustic data. It assumes that 
the observed sequence X = (Xl, ... ,XT ) , where Xt E]Rd is 
the multidimensional observation at time t, is governed by a 
hidden state sequence z = (Zl, ... , ZT ) , where Zt represents 
the hidden state of Xt and takes its values in a finite set 
{I, . . .  , K}, K being the possibly unknown number of states. 
The generative process of the HMM can be described in 
general by the following steps. Starting with the first time 
step state, Zl is distributed according to the initial transition 
distribution. Then, the current state Zt is distributed according 
to the transition distribution given the previous state (Zt-l) . 
Finally, given the state Zt , the observation Xt is generated 
from the emission distribution F( {} z') of that state. This 
generative process for the HMM can be summarized as in 
Equation (1). 

Zl CV7r1 

Zt l Zt-1 cv7rz'_l' 'Vt> 1 (1) 
Xt l Zt cvF({}z') 

For example, F({}z') can take a Gaussian (normal) dis­
tribution, denoted as N(x; (}z,), where the emission pa­
rameters are the mean vector and the covariance matrix 



() Zt = {JLZt' � Zt }. The joint distribution for the hidden states 
z and the observations X can be given by Equation (2). 

T 

p(Z,XI7rl,1r,() = P(Zl)P(Xllzl) IIp(ztlzt-l)p(Xtlzt) (2) 
t=2 

where T is the number of observations. The estimation 
of the Hidden Markov Model parameters (7rl, 1r, ()), that 
are, the initial state transition, the transition matrix, and 
respectively the emission parameters, is in general, estimated 
in a maximum likelihood estimation (MLE) framework by 
using the Expectation Maximization (EM) algorithm, also 
known as the Bauch-Welch algorithm [1]. However, for the 
finite HMM, the number of unique states K is required to be 
known a priori for the EM algorithm. This model selection 
issue can be addressed in a two-stage scheme by using model 
selection criteria such as the Bayesian Information Criterion 
(BIC) [4], the Akaike Information Criterion (AIC) [5], the 
Integrated Classification Likelihood criterion (ICL)[6], etc to 
select a model from a pre-estimated HMMs with varying 
number of states. 

The HDP-HMM [7][11][9] is a Bayesian non-parametric 
alternative for HMMs that offers a good alternative to select 
the number of clusters from the data as the learning proceeds, 
rather than a two-stage strategy. 

III. THE INFINITE HIDDEN MARKOV MODEL 

The Bayesian Non-Parametric (BNP) [12][13] alternative 
is a principled way to tackle the challenging problem of 
model selection in HMMs. Due the fact that, the transitions 
of states takes independent priors, there is no coupling 
across transitions between different states [8], therefore DP 
[14] is not sufficient to extend HMM to an infinite model. 
The Hierarchical Dirichlet Process (HDP) prior [7] over the 
transition matrix[8] tackle this issue and extends the HMM 
to the infinite state space model. 

A. The Hierarchical Dirichlet Process 

A Dirichlet Process (DP) [14] is a prior distribution over 
distributions. It can be denoted as DP(a, Go) and has two 
parameters, the scaling parameter a and the base measure 
Go. However DP is not sufficient to extend HMM to an 
infinite state space model. When the data has a related 
but different generative process, the Hierarchical Dirichlet 
Process (HDP) prior is used to extend the HMM to an infinite 
state space HDP-HMM [7]. A HDP assumes that the base 
measure for a set of DP Gk rv DP(a, Go), Vk = 1, . . .  K 
is itself sampled from a DP with parameters ('y, H), that is 
Go rv DP('y, H). 

The Chinese Restaurant Process plays a great role in 
the representation of the Dirichlet Process and HDP-HMM, 
by giving a metophor to the existence of a restaurant with 
possible infinite tables (clusters) that customers (the obser­
vations) are siting in that restaurant. An alternative of such a 
representation for the Hierarchical Dirichlet Process can be 
described by the Chinese Restaurant Franchise process. 

B. The Chinese Restaurant Franchise (CRF) 

The Chinese Restaurant Franchise (CRF) gives a repre­
sentation for the Hierarchical Dirichlet Process (HDP) by ex­
tending the Chinese Restaurant Process (CRP) [15][16][17] 
to a set of (J) restaurants rather than a single restaurant. 
Suppose a patron of Chinese Restaurant creates many restau­
rants, strongly linked to each other, by a franchise wide 
menu, having dishes COlmnon to all restaurants. As a result, J 
restaurants are created (groups) with a possibility to extend 
each restaurant to an infinite number of tables (states) at 
witch the customers (observations) sit. Each customer goes to 
his specified restaurant j, where each table of this restaurant 
has a dish that shares between the customers that sit at that 
specific table. However, multiple tables of different existing 
restaurants can serve the same dish. Figure 1 represents one 
such Chinese Restaurant Franchise Process for 2 restaurants. 
One can see the customers Xji entered the restaurant j and 
takes the place of one table tji' Each table has a specific dish 
kjt that can be also common for different restaurants (this 
case we have 2 restaurant representation). 
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Fig. 1. Representation of a Chinese Restaurant Franchise with 2 restaurants. 
The clients Xji are entering the jth restaurant (j = {l, 2}), sit at table tji 
and chose the dish kjt . 

The generative process of the Chinese Restaurant Fran­
chise can be formulated as follows. For each table a dish is 
assigned with kjt liJ rv iJ, where iJ is the rating of the dish 
served at the specific restaurant j. The table assignment of the 
jth restaurant for the ith customer is then drawn. Finally the 
observations, Xji, or the customers i that enters the restaurant 
j are generated by a distribution F(()kjtj, ) . The generative 
process for CRF is given in Equation (3). 

kjt liJ rviJ 
tji lITj rvITj (3) 

xji l{()k}�l' {kjd�l' tji rvF(()kjt ) 
J' 

A graphical model of such a process can be seen in the 
following Figure (2). 
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Fig. 2. Graphical representation of the Chinese Restaurant Franchise (CRF). 

More details for derivation and inference of the Chinese 
Restaurant Franchise (CRF) and the use of it in the Hierar­
chical Dirichlet Process could be found in [7][18] and [9]. 

C. Model Definition 

Hierarchical Dirichlet Process gives the possibility to 
have distributions over hyper-parameters by making the 
models more flexible. The coupling between transition matrix 
allows a higher level to DP prior over the parameters. 

DirbIK, .. .  ,,1K) 

Dir(aj3) 
(4) 

7r k being the transition matrix for the specific group k and 
j3 the prior hyper-parameter. 

Let G k describes both, the transition matrix 7r k and the 
emission parameters (h, the infinite HMM can be described 
by the following generative process: 

j31,,-y GEMb) 
7rkla,j3,-y DP(a,j3) 

Zt l7rk ,-y Mult(7rk) 
OkIH,-y H 

Xt lZt , {Ok}k=l ,-y F(Oz') 

(5) 

where j3 is a hyperparameter for the DP [19] that is dis­
tributed according to the stick-breaking construction noted 
GEM(.); Zt is the indicator variable of the HDP-HMM that 
are sampled according to a multinomial distribution Mult(.); 
the parameters of the model are drawn independently, accord­
ing to a conjugate prior distribution HI; F( 0 z,) is a data 
likelihood density, where we assume the unique parameter 
space of 0 Zt being equal to Ok. Suppose the observed 
data likelihood is a Gaussian density N(Xt ; Ok) where the 
emission parameters Ok = {ILkl �d are respectively the 
mean vector ILk and the covariance matrix �k. According to 
[20][21], the prior over the mean vector and the covariance 
matrix is a conjugate Normal-Inverse-Wishart distribution, 
denoted as NIW(fLo, "'0, vo, Ao), with the hyper-parameters 
describing the shapes and the position for each mixture 
densities: fLo is the mean of the mixtures should be, "'0 the 
number of pseudo-observations supposed to be attributed, 
and vo, Ao being similarly for the covariance matrix. In the 
generative process given in Equation (5), 7r is interpreted 

1 A conjugate prior distribution over () is a prior distribution for which 
the posterior distribution over () remains in the same family of the prior 
distribution. 

as a double-infinite transition matrix with each row taking 
a Chinese Restaurant Process (CRP), thus, in the HDP for­
mulation "the group-specific" distribution, 7rk corresponds to 
"the state-specific" transition where the Chinese Restaurant 
Franchise(CRF) defines distributions over the next state. As 
a consequence it was defined the infinite state space for the 
Hidden Markov Model. The graphical model for the infinite 
Hidden Markov Model is representated in figure 3. 

Fig. 3. Graphical representation of the infinite Hidden Markov Model 
(lHMM). 

D. Inference of the infinite Hidden Markov Model 

In this paper we investigate the inference of the Hidden 
Markov Model in the infinite state space (the HDP-HMM) 
with the Gibbs sampling algorithm. The base idea of the 
Gibbs sampling is to estimate the posterior distributions over 
all the parameters from the generative process of HDP-HMM 
given in (5). 

The Gibbs sampling algorithm is briefly summarized in 
the pseudo-code (1) that computes O(K) probabilities for 
each of t states, therefore it has a O(T K) computational 
complexity. The main idea to inference the HDP-HMM is 
to estimate the hidden states of the observed data Z = 

(Zl ' . . .  ZT) ' This step needs computing two factors: the first 
is the conditional likelihood p(Xt IX\t , Zt = k, z\t , H) and 
the second factor p(Zt lz\t , j3, a) computed as in Equation 
(10). 

if k ::; K, k i- Zt-l 

if k = Zt-l = Zt+l 

if k = Zt-l i- Zt+l 
if k = K + 1 

(10) 

where nij is the number of transitions from state i to the 
state j, excluding the time steps t and t - 1; n. i and ni. is 
the number of transition in and respectively out of state i 
and K is the number of distinct states in z\t . 

Second, sampling of the global transition distribution j3 
is given by a Dirichlet distribution where m.k represents 
the number of clusters k, respectively one can say m.k = 

L:f=l mjk [7][22]. Afterwards, the transition distribution 
7rk, is sampled according to the Dirichlet distribution that 
is followed by the sampling of the emission parameters Ok. 



Algorithm 1 Gibbs sampling for the lIDP-HMM 
Inputs: The observations (Xl, ... , XT ) and the # of Gibbs sam­
plings ns 

1: Initialize a random hidden state sequence Zo = (Zl, . . .  ,ZT ) . 

2: for q = 1 to ns do 
3: for t = 1 to T do 
4: 1. Sample the state Zt from 

p(Zt = kIX,z\t,,6,a,H) exp(xtlx\t,Zt = k,z\t,H) 
(6) 

p(Zt = klz\t,,6, a) 

5: 2. Sample the global transition distribution 
,6 ex Dir(ml, ... , mK,,) 

6: 3. Sample a new transition distribution 
(7) 

00 

1t'kexDir(nkl+a,6I, ... nkK+a,6K,a 2:= ,6i) (8) 
i=K+I 

7: 4. Sample the emission parameters fh. 

8: end for 
9: 4. Eventually update the hyper-parameters Ct, , . 

iO: end for 

(9) 

Outputs: The states assignments z and the emission param­
eter vector ff k . 

Assuming that the observed data takes a Gaussian distri­
bution, the emission parameters to be estimated are the mean 
vector and the covariance matrix, Ok = {ILk' �k}' These 
model parameters conditional on the data X, states z and 
the prior distribution P(J-Lkl �k) rv NIW(/Lo, "'0, vo, Ao) are 
sampled according to their posterior distributions. 

Finally, the hyper-parameters a and " because of their 
lack of the strong beliefs, are sampled according to a Gamma 
distribution [7], [8], [lO]. 

IV. EXPERIMENTS ON HUMPBACK WHALE SONG DATA 

In this experiment, we consider the HDP-HMM in a chal­
lenging problem of humpback whale song decomposition. 

The analysis of such complex signals that aims at dis­
covering the call units (which can be considered as a kind of 
whale alphabet), can be seen as a problem of unsupervised 
call units classification as in [23]. We therefore reformulate 
the problem of whale song decomposition as a unsupervised 
sequential data class problem. Contrary to the approach 
used in [23], in which the number of states (call units 
in this case) has been fixed manually, here, we apply the 
Hierarchical Dirichlet Process for Hidden Markov Model 
(HDP-HMM) method to learn the complex bioacoustic data, 
to find the sates of the whale song, and automatically infer 
the number of states from the data. The idea is to highlight 
the effectiveness of using such a model over the difficult 
problem of discovering whale song units. 

The used data are available in the framework of our 
SABIOD project publicly. They consist of MFCC parameters 
of 8.6 minutes of a Humpback whale song recordings pro­
duced at few meters distance from the whale in La Reunion 
- Indian Ocean. The data comprises 51336 observations with 

39 features. A dimension reduction pretreatment with a PCA 
technique was made. We choose to retain 13 features of 
the data, since it was sufficient to capture more then 95% 
of the cumulative percentage of the variance. We used the 
Gibbs inference algorithm for Hierarchical Dirichlet Process 
for Hidden Markov Model which runs for 30000 samplings. 

Figure (4) shows the state sequences partition, for all 8.6 
minutes of humpback whale song data, obtained by the Gibbs 
sampling, with the maximum number of states proposed, a 
priori, to be equal to L = 30. One can see that the number 
of states estimated by the HDP-HMM Gibbs sampling is 6. 
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Fig. 4. The state sequences obtained by the Gibbs sampling inference 
approach for HDP-HMM. 

For a more detailed information, the whole signal of 
the humpback whale song was separated by several parts 
of 15 seconds each. All the spectrograms of the humpback 
whale song and their corresponding obtained state sequence 
partitions, as well as the associated song are made avail­
able in the demo: http://sabiod.univ-tln.fr/workspace/IHMM_ 
Whale_demo!. This demo highlights the interest of using the 
Bayesian non-parametric HMM for unsupervised structuring 
whale signals. Three examples of the humpback whale song, 
with 15 seconds duration each, are presented and discussed 
in this paper (see Figures (5), (6), and (7)). 

Figure (5) represents the spectrogram and the correspond­
ing state sequence partition obtained by the HDP-HMM 
Gibbs inference algorithm, where the selected starting time 
point, in the whole signal, is 60 seconds. One can see that 
the state 1 corresponds to the sea noise. Another thing to 
say is that the state 6 is not present in this time range. This 
can be also seen in the full length state sequence partition 
shown in figure (4), where the 6-th unit appears firstly at 234 
seconds. 

Figure (6) represents the spectrogram and the respec­
tive state sequence partition obtained by the HDP-HMM 
Gibbs inference algorithm, for the signal part starting at 
255 seconds, is temporal location close to the middle of the 
humpback sound recording. The sea noise, which we can see 
in unit 1, is predominant noise in this time step. The song 
unit 2, 3 and 4 song unit can be also seen in this song time 
range. 
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Fig. 5. The spectrogram of the whale song (top), starting with 60 seconds 
and the obtained state sequences (bottom) by the Gibbs sampling inference 
approach for the HDP-HMM. 
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Fig. 6. The spectrogram of the whale song (top), starting with 255 seconds 
and the obtained state sequences (bottom) by the Gibbs sampling inference 
approach for the HDP-HMM. 

Figure (7) represents the spectrogram and the respective 
state sequences obtained by the HDP-HMM Gibbs inference 
algorithm, for a starting point at 495 seconds, which is close 

to the end of the humpback sound recording. In this time 
range the 6-th sound unit is the predominant one. Moreover, 
the sound unit 1 remains the sea noise. 
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Fig. 7. The spectrogram of the whale song (top), starting with 495 seconds 
and the obtained state sequences (bottom) by the Gibbs sampling inference 
approach for the HDP-HMM. 

All the obtained state sequences partitions fit very well 
the spectral patterns. We note that the estimated state 1 is the 
silence. The state 2 fits the up and down sweeps. State 3 fits 
low and high fundamental harmonics sound units, the fourth 
state fits for numerous harmonics sound. The fifth state is 
the silence, generally continued by some another sound unit, 
this can be due to the fact that there where not a sufficient 
number of Gibbs samplings. For a longer learning the fifth 
state should be merged with the first state. Finally, the state 
6 is a very well separated song unit that is a very noisy and 
broad sound. The analysis is discriminative on the structure. 

With this method we can evaluate the representation of 
units or sequence of units, for example, we compute the op­
timal local alignment using the Smith-Watennan algorithm. 
Thus for each frame of 15 sec and each position in the com­
plete signal we get the alignment score (with the following 
costs : alignment=4, mutation=-3, insersion=-I, deletion=-
1). The results demonstrate that several sequences of few 
seconds are regularly repeated in the complete sequence, as 
depicted in the literature [23]. We see in the figure 8 that the 
temporal pattern of the third frame of 15 seconds (available 
on line 2 and the corresponding wav file 3) is regularly 
repeated in the complete sequence at times index 50, 150, 
290, 410 and 460 ( i.e. 0.8, 2.5, 4.8, 6.8, 7.6 minutes). This 

2http://sabiod.univ-tln.fr/workspace/IHMM_ Whale_demo/GIBBS_ 
seg3lJCNNdemo.png 

3 http://sabiod.univ-tln.fr/workspaceIIHMM_ Whale_demo/GIBBS_ 
seg3IJCNNdemo.wav 



result is consistent with the alignment analysis processed 
on humpback songs recorded in Pacific Ocean [24]. The 
interest of our approach is to propose here a complete 
automatic analysis, whereas usual sequence decomposition 
is using a priori information.Precise and objective sequence 
comparisons are mandatory because they reveal infonnation 
on the whale origin [24]. 
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Fig. 8. The optimal local alignment score of the third frame of 15 seconds 
on the complete song of 8 minutes (abscissa is in feature samples / 100). We 
see clearly a modulation that demonstrates a repetition of the frame pattern. 

The HDP-HMM method was compared to the Sticky 
HDP-HMM that include a parameter for self transition bias, 
and places a prior over this parameter, thus the expected 
probability of self transition is increased by an amount 
proportional to a value"" > O. The Sticky HDP-HMM (with 
a small "" = 0.1) was investigated over the same data set 
(with the same features). The Gibbs also runs for 30000 
samplings. The resulting state sequences partition, for all 8.6 
minutes of humpback whale song data, obtained by the Stick 
HDP-HMM is illustrated in figure (9). One can see that the 
number of states estimated by the Stick HDP-HMM Gibbs 
sampling is 8, however the states 1,2,3 and 6 have a small 
number of observations assigned (respectively 33, 72, 50 and 
57), thus this states could be merged with other states for a 
longer Gibbs sampler. 

An example of the obtained result is illustrated on figure 
10 that is the sound spectrogram equivalent to illustrated 
figure 6. We see that state 5 represents the sea noise, the 
other states are the whale song units. 

V. CONCLUSION AND FUTURE WORKS 

We investigated the Hierarchical Dirichlet Process for 
Hidden Markov Model in a challenging problem of unsu­
pervised learning from complex bioacoustic data. The Gibbs 
sampling algorithm of the HDP-HMM was applied to this 
real world data. The possible hidden whale song units of 
the humpback whale signals were accurately recovered in 
fully automatic way. This result would be very interesting for 
biopopulation studies such as in [24]. The results highlight 
the interest of using the Bayesian non-parametric approach 
for the Hidden Markov Model. In a future work, we will 
propose the possibility to make the eigenvalue decomposition 
for the covariance matrix for the emission density of the 
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Fig. 9. The state sequences obtained by the Gibbs sampling inference 
approach for Stick HDP-HMM. 
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Fig, 10. The spectrogram of the whale song (top), starting with 255 seconds 
and the obtained state sequences (bottom) by the Gibbs sampling inference 
approach for the Stick-HDP-HMM. 

HMM, more flexible models could appear in term of different 
volumes, orientations and shapes for each states. 
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