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2- Université de Toulon, CNRS, LSIS, UMR 7296, 83957 La Garde, France

3- Institut Universitaire de France, iuf.amue.fr

Abstract. This paper proposes a new Bayesian non-parametric approach
for clustering. It relies on an infinite Gaussian mixture model with a Chi-
nese Restaurant Process (CRP) prior, and an eigenvalue decomposition of
the covariance matrix of each cluster. The CRP prior allows to control
the model complexity in a principled way and to automatically learn the
number of clusters. The covariance matrix decomposition allows to fit var-
ious parsimonious models going from simplest spherical ones to the more
complex general one. We develop an MCMC Gibbs sampler to learn the
models. First results obtained on both simulated and real data highlight
the interest of the proposed infinite parsimonious mixture model.

1 Introduction

Clustering is one of the essential tasks in machine learning and statistics. One
of the most popular approaches in cluster analysis is the parametric finite mix-
ture model-based clustering [1, 2]. However, these parametric models may not
be well adapted to represent complex and realistic data sets. Another issue in
the finite mixture model-based clustering approach is the one of selecting the
number of mixtures (model selection). Bayesian Non-Parametric (BNP) meth-
ods for clustering, including Infinite Gaussian Mixture Models (IGMM) [3] and
CRP mixtures [4] provide a principled way to overcome these issues. They avoid
the assumption of restricted functional forms and thus allow the complexity and
accuracy of the inferred model to grow as more data is observed. The non-
parametric aspect of these approaches relates the hypothesis of assuming that
model complexity associated to the number of model parameters grows with the
data volume and complexity. These non-parametric approaches also represent
a good alternative to the difficult problem of model selection encountered in
parametric models. In this work , we rely on this Bayesian non-parametric for-
mulation of the GMM and assume the flexible decomposition of the covariance
matrix of each Gaussian density which has proven its big flexibility in cluster
analysis [5, 6]. This leads to an Infinite Parsimonious Gaussian mixture which
is more flexible in term of modeling and its use in clustering, and automatically
provides the number of clusters. The paper is organized as follows. Section 2
briefly discusses previous work on finite Gaussian mixture clustering. Then, Sec-
tion 3 presents the proposed approach and Section 4 shows experiment results.

Let X = (x1, . . . ,xn) be a set of n i.i.d multidimensional data in Rd, and
let z = (z1, . . . , zn) be the corresponding unknown cluster labels where zi ∈
{1, . . . ,K} ,



2 Parametric parsimonious Gaussian clustering

Parametric Gaussian clustering is based on the finite Gaussian Mixture Model
(GMM) [1, 2] where the probability density function of the data is given by:

p(xi|θ) =
K∑

k=1

πk Nk(xi|θk) (1)

where θ = {πk, θk} Kk=1 are the GMM parameters which include the non-negative
mixing proportions πk that sum to one and θk = (µk,Σk) which are respectively
the mean vector and the covariance matrix for the kth Gaussian component.
The finite parsimonious GMMs [5, 6] exploit an eigenvalue decomposition of the
Gaussian covariance matrices. This provides a wide range of very flexible models
going from simplest spherical models to the complex general one. Indeed, the
eigenvalue decomposition of the covariance matrix for each Gaussian component
density allows having clusters with diffentes volumes, orientations and shapes
[5, 6]. This parametrization of the covariance matrix is of the following form:

Σk = λkDkAkD
T
k (2)

where λk is a scalar that defines the volume of cluster k, Dk is an orthogonal ma-
trix which defines its orientation and Ak is a diagonal matrix with determinant
1 which defines its shape. The mixture model parameters θ can be estimated by
maximizing the observed data likelihood p(X|θ) =

∏n
i=1

∑K
k=1 πk Nk(xi|θk) or

in a maximum a posteriori (MAP) estimation (Bayesian) framework by maxi-
mizing the posterior parameter distribution: p(θ|X) = p(θ)p(X|θ), p(θ) being a
chosen prior distribution on the model parameters θ. The Maximum Likelihood
estimation usually relies on the Expectation-Maximization (EM) algorithm or
EM extensions [7]. The MAP estimation can still be performed by EM in the
case of conjugate priors as in [8]. Markov Chain Monte Carlo (MCMC) sampling
techniques can also be used as in [9]. For the case of finite parsimonious GMMs,
several learning algorithms have been proposed. They in majority rely on a ML
estimation via EM or EM extensions [5, 6], or on Bayesian (MAP) estimation
using EM as in [8] or by MCMC sampling techniques, namely the Gibbs sampler
as in [9]. However, in the finite GMM approach for clustering, the number of
clusters is required. One of the main issues in parametric model-based clustering
is therefore the one of selecting the number of clusters. This model selection in
parametric Bayesian and non-Bayesian mixture clustering can be performed via
penalized log-likelihood criteria such as BIC [10].

3 Bayesian non-parametric parsimonious clustering

Bayesian non-parametric (BNP) mixture approaches for clustering offer a prin-
cipled alternative to tackle this problem by inferring the number of clusters
from the data in a single run, rather than in a two-stage scheme as in stan-
dard model-based clustering [4, 3]. They assume that the observed data are
governed by an infinite number of clusters, but only a finite number of them do



actually generates the data. This is achieved by assuming a general process as
prior on the infinite possible partitions, which is not restrictive as in classical
Bayesian inference, in such a way that only a (small) finite number of clusters
will be actually active. Such a prior can be the CRP [4]. Several Bayesian
non-parametric models have considered the general GMM, that is the infinite
Gaussian mixture [3] and the Chinese Restaurant Process (CRP) mixture [4]. In
the proposed BNP parsimonious clustering approach, we exploit the eigenvalue
decomposition of the cluster covariance matrices as in [5, 6] and integrate it into
an infinite mixture modeling framework. This leads to an infinite parsimonious
Gaussian mixture (IPGMM) which is very flexible in terms of modeling, and
automatically infers the number of flexible clusters from the data. We assume a
CRP prior over the infinite possible partitions.

3.1 Chinese Restaurant Process (CRP) parsimonious mixture

The CRP provides a distribution on the infinite partitions of the data, that is a
distribution over the positive integers 1, . . . , n. Consider the joint distribution of
the unknown cluster labels: p(z) = p(z1)p(z2|z1) . . . p(zn|z1, z2, . . . , zn−1). Each
term of this joint distribution can be computed from the CRP prior as follows.
Suppose there is a restaurant with an infinite number of tables and in which
customers are entering and sitting at these tables. Customers are social, so that
the ith customer sits at table k with probability proportional to the number
of already seated customers nk and may choose a new table with a probabil-
ity proportional to a small positive real number α which represents the CRP
concentration parameter. This can be explicitly formulated as follows

p(zi= k|z1, ..., zi−1) = CRP(z1, . . . , zi−1;α) =

{ nk
i−1+α if k ≤ K+

α
i−1+α if k > K+

(3)

where K+ is the number of tables for which the number of customers sitting
in is nk > 0, and k ≤ K+ means that k is a previously occupied table and
k > K+ means k is a new table to be occupied. From this distribution, one can
therefore allow assigning new data to possibly previously unseen (new) clusters
as the data are observed, after starting with one cluster. In clustering with the
CRP, customers correspond to data points and tables correspond to clusters.
In CRP mixture, the prior CRP(z1, . . . , zi−1;α) is completed with a likelihood
with parameters θ (i.e., in the GMM case a multivariate Gaussian likelihood),
with each table (cluster), and a prior distribution (G0) for the parameters. For
example in the GMM case one can use conjugate priors, that is a multivariate
normal inverse-Wishart prior distribution for the mean vectors and the covari-
ance matrices. This means that, the ith customer, after sitting at table zi= k,
chooses a dish (the parameter θzi) from the prior of that table (cluster). This
can be summarized by the following generative process.

zi ∼ CRP(z1, . . . , zi−1;α) (4)

θzi ∼ G0 (5)

xi ∼ p(.|θzi)· (6)



According to this process, the generated parameters θi exhibit a clustering prop-
erty, that is, they share repeated values with positive probability where the
unique values of θi shared among the variables are independent draws for the
base distribution G0 [4]. The structure of the shared values defines a partition
of the integers from 1 to n, and the distribution of this partition is a CRP [4].In
our proposed infinite parsimonious Gaussian mixture, the parameters θi which
include the mean vector and the covariance matrix, the latter is parametrized in
term of an eigenvalue decomposition to provide more flexible clusters with possi-
bly different volumes, shapes and orientations. This can be seen as a variability
of dishes in terms of Chinese Restaurant interpretation.

3.2 MCMC Gibbs sampling for model learning

We use a MCMC Gibbs sampling [3, 11, 4] to learn the proposed Bayesian
non-parametric parsimonious mixture model. The used priors on the model
parameters depends on the type of the parsimonious model. Thus, sampling
the model parameters varies according to the considered parsimonious mixture
model. Indeed, we investigated seven parsimonious models, covering the three
families of the mixture models: the general, the diagonal and the spherical
family. The parsimonious models therefore go from the simplest spherical one to
the more general full model. Table 1 summarizes the considered parsimonious
models and the corresponding prior for each model used in the Gibbs sampling.

Nr. Decomposition Model-Type Prior Applied to

1 λDADT General IW Σ = λDADT

2 λkDADT General IG and IW λk and Σ = DADT

3 λkDkAkD
T
k General IW Σk = λkDkAkD

T
k

4 λA Diagonal IG each diagonal element of λA
5 λkA Diagonal IG each diagonal element of λkA
6 λI Spherical IG λ
7 λkI Spherical IG λk

Table 1: Infinite Parsimonious GMMs (IPGMM) with eigenvalue decomposition and

the associated prior for each decomposition. Note that I denotes an inverse distribu-
tion, G a Gamma distribution and W a Wishart distribution.

4 Experiments

We performed experiments on both simulated and real data in order to assess the
behavior of our proposed non-parametric method. We highlight its flexibility in
terms of modeling, and its use for clustering and selecting the number of clusters.
In the experiments, each Gibbs is run ten times with different initializations,
each Gibbs run generates 2000 samples. The best solution corresponding to the
highest posterior probability is then selected.



4.1 Experiment on simulated data

We considered a two-class situation which is the same as for the parametric
approach in [6], and consists in a sample of n = 500 observations from a two-
component Gaussian mixture in R2 with the following parameters: π1 = π2 =
0.5, µ1 = (0, 0)T and µ2 = (3, 0)T , Σ1 = 100 I2 and Σ2 = I2. Figure 1 shows
the simulated data and the obtained partitions by the proposed Bayesian non-
parametric clustering approach for three different parsimonious models. First, it
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λI: K̂ = 5, L̂ = −57159 λkI: K̂ = 2, L̂ = −51125 λkDkAkD
T
k : K̂ = 2, L̂ = −51152

Figure 1: A two-class data set and the log-likelihood values (L̂), and estimated number

of clusters (K̂) obtained by infinite parsimonious GMMs.

can be observed that, the partition provided by the spherical model (λI) which
does not allow clusters with different volumes, is far from the actual partition.
This model also fails for the finite GMM case [6]. However, the spherical model
λkI, which allows different cluster volumes, fits at best the underlying structure
of the data and provides a precise partition (the error rate equals 4.40%) with
the actual number of clusters. It is even slightly more precise than the general
model. Indeed, the general model λkDkAkDT

k , which is the more complex model
in terms the number of parameters, provides a closely similar result (the error
rate equals 4.80%). Furthermore, for this simulated data, the best log-likelihood
value corresponds to the spherical model with different cluster volumes (λkI).
One can conclude that, in a non-parametric clustering, it is important to consider
clusters with different volumes, and at least for this data set, the spherical model
with different cluster volumes (λkI) is the best model.

4.2 Experiment on real data

We considered the well-known Iris data set for illustration. Let us recall that Iris
data contains 150 data of dimension 4 covering three classes. Figure 2 shows the
partition and densities estimated by the proposed non-parametric parsimonious
clutering approach.

We can see that both the spherical model λkI and the diagonal model λkB
provide the correct number of classes and allow to reconstruct the hidden data
structure. The misclassification error rate for the diagonal model is 5.33% and
the one for the spherical model is 10.66%. Let us also note that, for the fi-
nite GMM clustering approach, the models which provide the correct number
of clusters are the diagonal models λB and λkB and the corresponding misclas-
sification error rates are respectively 9.33% and 11.33%. This can make more
advantageous this non-parametric alternative.
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Figure 2: Clustering results obtained by a spherical model (left), a diagonal model

(middle) and the general model (right).

5 Conclusion

In this paper we presented a new Bayesian non-parametric parsimonious ap-
proach for clustering. It is based on an infinite GMM with a CRP prior and
an eigenvalue decomposition of the cluster covariance matrix. It allows deriving
several flexible models and avoids the problem of model selection encountered in
maximum likelihood and Bayesian learning of parametric GMM. The obtained
results highlight the interest of using this infinite parsimonious Bayesian clus-
tering as a good alternative to finite Gaussian clustering. Our current work
investigate additional experiments on both simulated and real data and future
work may concern other MCMC techniques to learn the models.
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