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Mixture-of-experts (MoE) models are a powerful paradigm for modeling data aris-
ing from complex data generating processes (DGPs). In this article, we demonstrate
how different MoE models can be constructed to approximate the underlying DGPs
of arbitrary types of data. Due to the probabilistic nature of MoE models, we pro-
pose the maximum quasi-likelihood (MQL) approach as a method for estimating
MoE model parameters from data, and we provide conditions under which MQL
estimators are consistent and asymptotically normal. The blockwise minorization–
maximization (blockwise-MM) algorithm framework is proposed as an all-purpose
method for constructing algorithms for obtaining MQL estimators. An example deri-
vation of a blockwise-MM algorithm is provided. We then present a method for
constructing information criteria for estimating the number of components in MoE
models and provide justification for the classic Bayesian information criterion
(BIC). We explain how MoE models can be used to conduct classification, cluster-
ing, and regression and illustrate these applications via two worked examples.
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1 | INTRODUCTION

Let Ξ> = X>,Y>� �2X×Y be an observed random pair from some data generating process (DGP), where X�ℝp and Y�
ℝq for p, q 2 ℕ. Here, (�)> is the matrix transposition operator. We call X the input variable and Y the output (or response)
variable. Suppose that the DGP of interest can be approximated as follows.

Firstly, suppose that there is an unobserved random variable Z 2 [g] = {1, …, g} (g 2 ℕ), where the conditional rela-
tionship between Z and the input can be characterized by

ℙ Z = zjX= xð Þ=Gatez x;γð Þ, ð1Þ
where γ2ℝdγ (dγ 2 ℕ) is some parameter vector, Gatez(x; γ) > 0, and

Pg
z=1Gatez x;γð Þ=1. Secondly, let the conditional

relationship between the response and the input, given Z = z, be characterized by

f yjX= x,Z = zð Þ=Expertz yjx;ηz
� �

, ð2Þ
where ηz 2ℝdη (dη 2 ℕ) is some parameter vector and Expertz(y| x; ηz) is a probability density function or probability mass
function (PDF or PMF; see e.g., DasGupta, 2011, Chs. 2 and 3). Via characterizations (1) and (2), and by using the law of
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total probability, we can characterize the marginal relationship between the response and the input, unconditional on Z, via
the expression

MoE yjx;θð Þ =
Xg
z=1

Gatez x;γð ÞExpertz yjx;ηz
� �

= f yjX= xð Þ,
ð3Þ

where f(y| X = x) is a PDF of the response y given the input X = x. Here, θ> = γ>,η>1 ,…,η>g
� �

is the vector of all parameter

elements that are required in characterizing (3). We refer to the approximation of the DGP of Ξ of form (3) as a g-component
mixture-of-experts (MoE) model. The functions Gatez and Expertz are referred to as gating and expert functions, respectively.

MoE models were first studied as neural networks (NNs) by Jacobs, Jordan, Nowlan, and Hinton (1991), where they
were used to model complex and heterogeneous DGPs. A schematic diagram of an MoE model as a NN is provided in
Figure 1. Some recent reviews of the MoE literature are provided by Yuksel, Wilson, and Gader (2012) and Masoudnia and
Ebrahimpour (2014).

MoE models have been broadly applied to numerous areas of business, science, and technology for the tasks of classifica-
tion, clustering, and regression. A sample of recent applications that were not covered by Yuksel et al. (2012) and Masoudnia
and Ebrahimpour (2014) includes: modeling neural connectivity (Bock & Fine, 2014), fusion and segmentation of images
(Camplani, del Blanco, Salgado, Jaureguizar, & Garcia, 2014), segmentation of spectral images (Cohen & Le Pennec, 2014),
phone activity recognition (Lee & Cho, 2014), climatic change modeling (Nguyen & McLachlan, 2014), parallel mapping of
threads in dynamic runtime environments (Emani & O’Boyle, 2015), cardiac stress monitoring via heart sounds (Herzig, Bickel,
Eitan, & Intrator, 2015), aerodynamic performance predictions (Liem, Mader, & Martins, 2015), functional magnetic resonance
image analysis (Shoenmakers, Guclu, van Gerven, & Heskes, 2015), heterogeneity modeling in neural connectivity data
(Eavani et al., 2016), reinforcement learning (He, Boyd-Graber, Kwon, & Daume III, 2016), landmine detection (Yuksel &
Gader, 2016), and attention deficit hyperactivity disorder diagnosis (ADHD) (Yaghoobi Karimu & Azadi, 2017).

Since the reviews by Yuksel et al. (2012) and Masoudnia and Ebrahimpour (2014), there have also been numerous theo-
retical developments regarding the approximation capacity of MoE models (Mendes & Jiang, 2012; Nguyen, Lloyd-Jones, &
McLachlan, 2016; Norets & Pelenis, 2014), the performance of maximum quasi-likelihood (MQL) estimation algorithms and
the properties of MQL estimators (Nguyen & McLachlan, 2014, 2016), and the modes by which model selection can be con-
ducted within the MoE framework (Baudry, 2015; Montuelle & Le Pennec, 2014).

Regarding the approximation capacity, Mendes and Jiang (2012) demonstrated that MoE models with soft-max gating func-
tions polynomial regression experts are able approximate arbitrarily complex conditional relationships. A similar result is obtain by
Norets and Pelenis (2014) who investigated the use of Gaussian gating functions with Gaussian regression experts. Via the Stone-
Weierstrass theorem, Nguyen et al. (2016) demonstrated that the mean function an MoE model with soft-max gating function and
linear regression expert was able to approximate any arbitrary continuous function on a compact set.
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FIGURE 1 Schematic diagram of the NN architecture of a g-component MoE
model as defined by characterizations (1), (2), and (3)
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We have concentrated our efforts on the estimation of non-standard MoEs, the theory regarding their approximation
capacity, as well as their applications in functional data analysis and signal processing. For example, estimation methodology
for non-standard MoE models with Laplace, Student-t, and skew-t experts were obtained in Nguyen and McLachlan (2016),
Chamroukhi (2016), and Chamroukhi (2017), respectively. As mentioned earlier, a power approximation theoretic result is
obtained in Nguyen et al. (2016), and numerous applications of MoEs to functional data analysis and signal processing can
be found in articles such as Chamroukhi, Same, Govaert, and Aknin (2009), Same, Chamroukhi, Govaert, and Aknin (2011),
and Chamroukhi, Glotin, and Same (2013). Throughout our research, we have found that there is a lack of aggregated
knowledge regarding the more theoretical and methodological aspects of MoE modeling. As such, we have endeavored to fill
the perceived void with this article.

The goal of this article is to provide a concise treatment regarding the practice of constructing MoE models as well as
the theoretical justification of such models. As such, the remainder of the article progresses as follows. In Section 2, we dis-
cuss the construction of MoE models via the choice of gating and expert functions. In Section 3, we present some of the
aforementioned recent theoretical results in a digestible manner and demonstrate their use, where possible. In Section 4, we
discuss the problems of classification, clustering, and regression, and show how MoE models can be applied to each of these
tasks. In Section 5, we provide some examples of each task. Conclusions are finally drawn in Section 6.

2 | MIXTURE-OF-EXPERTS MODELING

We begin by considering the original MoE model of Jacobs et al. (1991) that was designed for the task of multi-speaker
vowel discrimination. Here, Jacobs et al. (1991) paired the popular and ubiquitous soft-max gating function

Gatez x;γð Þ= exp αz0 +α>
z x

� �
Pg
ζ=1

exp αζ0 +α>
ζ x

� � , ð4Þ

with the multivariate Gaussian distribution expert

Expertz yjx;ηz
� �

=ϕ y;μz,Σz
� �

, ð5Þ
where

ϕ y;μ,Σð Þ= 2πΣj j−1=2 exp −
1
2
y−μð Þ>Σ−1 y−μð Þ

� �
,

is the multivariate normal density function with mean vector μ 2 ℝq and positive-definite covariance matrix Σ 2 ℝq × q.
Here αz0 2 ℝ and α>

z = αz1,…,αzp
� �2ℝp for each z 2 [g − 1], and αg0 = 0 and αg = 0, where 0 is the zero vector. We set

γ> = α10,α>
1 ,…,αg−1,0,α>

g−1

� �
and η>z = μ>z ,vech

>Σz
� �

, where vech(�) extracts the unique elements of a symmetric matrix

(cf. Henderson & Searle, 1979). The MoE of Jacobs et al. (1991) is a direct extension of the usual Gaussian mixture model
(GMM; see e.g., McLachlan & Peel, 2000, Ch. 3) that allows for mixing proportions (i.e., the probabilities of Z = z, for each
z 2 [g]) to depend on the input variable.

In Jordan and Jacobs (1994), the expert of form (5) was extended upon via the multivariate Gaussian regression expert

Expertz yjx;ηz
� �

=ϕ y;bz +Bzx,Σzð Þ, ð6Þ
where bz 2 ℝq and Bz 2 ℝq × p, for each z 2 [g]. Here, η>z = b>z ,vec

>Bz
� �

, where vec(�) puts all elements of the matrix input
into a vector (cf. Henderson & Searle, 1979). Whereas the MoE model with expert (5) can be seen as an extension of the
GMM, the MoE with expert (6) is analogously an extension of the multivariate Gaussian mixture regression model of Jones
and McLachlan (1992). Robust experts for heterogeneous linear regression models have also been considered by Nguyen
and McLachlan (2016), Chamroukhi (2016), and Chamroukhi (2017), where Laplace, Student-t, and skew Student-t experts
are used in place of (6), respectively.

2.1 | Mixture of generalized linear experts models

In the same way that the MoE model with experts in the form of (6) can be seen as a heterogeneous linear regression model,
heterogeneous versions of other generalized linear models (GLMs; cf. Nelder & Wedderburn, 1972 and McCullagh &
Nelder, 1989) can be constructed via MoE modeling. The first of such models was considered by Jordan and Jacobs (1994),
where the logistic regression expert
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Expertz yjx;ηz
� �

=
exp β0z + β>z x

� �
1+ exp β0z + β>z x

� �" #y
1

1+ exp β0z + β>z x
� �" #1−y

, ð7Þ

was proposed for the modeling of binary response data Y 2 {0, 1}. Here, β0z 2 ℝ, βz 2 ℝp and η>z = βz0,β
>
z

� �
for

each z 2 [g].
Another MoE model in this class is the MoE with Poisson regression experts of Grun and Leisch (2008), where

Expertz yjx;ηz
� �

=
exp y β0z + β>z x

� �� 	
y!

exp − exp β0z + β>z x
� �� 	

,

which was proposed for modeling of count response data Y 2 {0} [ ℕ. Here, ηz is the same as that of (7). Further models
considered in the literature include the MoE models with gamma experts of Jiang and Tanner (1999a) for modeling positive
responses Y 2 [0, ∞) as well as the MoE models with multinomial logistic experts of Chen, Xu, and Chi (1999) for model-
ing categorical responses Y 2 [K] for some K 2 ℕ, where K > 2.

2.2 | Gating functions

The majority of MoE models that are applied in practice tend to utilize soft-max gating functions in the form given by (4).
In Xu, Jordan, and Hinton (1995), the Gaussian gating functions of form

Gatez x;γð Þ= πzϕ x;mz,Szð ÞPg
ζ=1

πζϕ x;mζ,Sζð Þ
, ð8Þ

was proposed, where πz > 0 for each z 2 [g],
Pg

z=1πz =1, and

γ> = π1,m>
1 ,vech

>S1,…,πg,m>
g ,vech

>Sg
� �

:

The Gating functions of form (8) have seen interest use in the literature under the cluster-weighted modeling framework
of Ingrassia, Minotti, and Vittadini (2012) and the Gaussian locally-linear mapping framework of Deleforge, Forbes, and
Horaud (2015). It can be shown that under some restrictions, there is an equivalence between the class of gating functions of
form (4) and (8) (cf. Ingrassia et al., 2012; Norets & Pelenis, 2014).

Although it is possible to utilize any set of functions that meet the restrictions Gatez(x; γ) > 0, and
Pg

z=1Gatez x;γð Þ=1,
there are few alternatives to (4) and (8) that are considered in the literature. Some of these considered alternatives include the
exponential family gating functions of Xu et al. (1995) and the Student-t gating functions of Perthame, Forbes, Olivier, and
Deleforge (2016).

Remark 1: Aside from the simple MoE models that can be characterized via the simple architecture of Figure 1, there are
more intricate constructions that are possible for the modeling of complex data. Examples of extensions to the MoE model-
ing framework include the Mixed-effects MoE models of Ng and McLachlan (2007) and Ng and McLachlan (2014), and the
hierarchical MoE models of Jordan and Jacobs (1992) and Jordan and Jacobs (1994) that can be used to fit highly heteroge-
neous and nonlinear data. We find the hierarchical MoE models to be particularly interesting moving forward as they present
a direction for construction of deep generative NNs. Works in this direction include van den Oord and Schrauwen (2014),
Theis and Bethge (2015), and Variani, McDermott, and Heigold (2015).

3 | THEORETICAL RESULTS

3.1 | Approximation theorems

We begin by considering some approximation theory results regarding the most popular class of MoE models: the mixture of
linear experts with gates of form (4), and

Expertz yjx;ηz
� �

= hz y;β0z + β>z x
� �

,

where hz(�; μ) is a PDF with support ℝ and mean value μ 2 ℝ. Here, ηz is the same as that of (7). Examples of such MoE
models include the q = 1 case of the linear experts of Jordan and Jacobs (1994), the Laplace experts of Nguyen and
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McLachlan (2016), and the Student-t experts of Chamroukhi (2016). Under characterization (3), the expectation of the
response given the input of such MoE models can be written as

E Y jX= xð Þ =
Xg
z=1

exp αz0 +α>
z x

� �
Xg
ζ=1

exp αζ0 +α>
ζ x

� � β0z + β>z x
� �

=m xð Þ:

ð9Þ

Let ℂ Xð Þ be the class of continuous functions and let

M Xð Þ= m xð Þ :m has form 9ð Þ,θ2ℝ2g p+1ð Þ−p−1, g2ℕ
n o

,

be the class of mean functions obtained from the mixture of linear experts models described above, over the domain X. The
following result from Nguyen et al. (2016) was obtained as a direct consequence of the Stone-Weierstrass theorem
(cf. Cotter, 1990).

Theorem 1: If X�ℝq is compact, then the class M Xð Þ is dense within the class ℂ Xð Þ. That is, for any c2ℂ Xð Þ and ϵ > 0,
there exists an m2M Xð Þ such that supx2X c xð Þ−m xð Þj j< ϵ.

Theorem 1 can be viewed as a universal approximation theorem in the style of the famous result by Cybenko (1989).
The theorem states that any continuous function over a compact subset of the Euclidean space can be modeled arbitrarily
closely by a mixture of linear experts mean function of form (9). Unfortunately, the theorem does not provide an
approximation rate.

Let �k kX,s denote the ℒs norm over the support X, for s 2 (1, ∞]. Define Wk
s Xð Þ to be the Sobolev class of continuously

differentiable functions in ℒs Xð Þ (i.e., functions with finite ℒs norm over the support X) with k 2 ℕ derivatives, where the
sum of the ℒs norms of the derivatives is bounded. The following result regarding the estimation of functions in Sobolev
classes was obtained by Zeevi, Meir, and Maiorov (1998).

Theorem 2: Assume that X�ℝq is compact and define Mg Xð Þ to be the subset of M Xð Þ where g is fixed. There exists an
absolute positive constant c such that

sup
w2Wk

s Xð Þ
inf

mg2Mg Xð Þ
w xð Þ−mg xð Þ

 



X,s ≤
c

gk=q
:

Theorem 2 sacrifices the generality of approximating over all continuous functions as a tradeoff for a uniform approxima-
tion rate result. The theorem states that an increase in the number of components in the MoE model increases the accuracy
of approximation. However, the rate of increase is itself accelerated by greater differentiability of the target class and deceler-
ated by increasing dimensionality of the support X.

We now suppose that Ξ 2 ℝp × ℝ is generated from some unknown DGP that can be characterized by a joint density
function f0(ξ) and where the conditional relationship between the response and the input can be characterized by a condi-
tional density function f0(y| X = x). Suppose that we wish to approximate f0(y| X = x) by an MoE with Gaussian gating
functions of form

Gatez x;γð Þ= πzϕ x;mz,s2z I
� �

Pg
ζ=1

πζϕ x;mζ,s2ζI
� � , ð10Þ

where s2z >0 and I is the identity function, and experts of form

Expertz yjx;ηz
� �

= h y;μz,σz
� �

, ð11Þ
with μz 2 ℝ and σz, for each z 2 [g]. Here, the function h(�, μ, σ2) is taken to be of the form

h �;μ,σ2� �
= σ−1ψ

�−μ

σ

� �
,

where ψ(y) is a probability density function that is a bounded, continuous and symmetric function (about zero), and mono-
tonically decreasing in |y|. Furthermore, we assume that logh(y; μ, σ) is integrable with respect to the f0(ξ)dξ.
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Let the class of g-component MoE models of form (3) with gating functions of form (10) and experts of form (11) over
the support X be denoted MEg Xð Þ. Further, denote the Euclidean norm by k�k. The following result is available from Norets
and Pelenis (2014).

Theorem 3: Assume that (A1) X�ℝq is compact, (A2) f0(y| X = x) is continuous in ξ, and (A3) there exists an s > 0
such that

ð
log

f0 yjX= xð Þ
inf a−yk k≤ s inf b−xk k≤ s f0 ajX= bð Þ f0 ξð Þdξ< ∞ :

If Assumptions (A1)–(A3) are fulfilled then for any ϵ > 0, there exists a g 2 ℕ and an MoE yjx;θð Þ 2MEg Xð Þ, such thatð
log

f0 yjX= xð Þ
MoE yjx;θð Þ f0 ξð Þdξ< ϵ:

Theorem 3 states that the class of MoE models with Gaussian gating and a suitable location-scale experts can densely
approximate arbitrary continuous PDFs over compact supports with respect to the conditional Kullback–Leibler divergence
(Kullback & Leibler, 1951). This is a powerful result and extends upon well-known denseness theorems regarding approxi-
mations of marginal distributions by mixtures of location-scale PDFs (e.g., DasGupta, 2008, Thm. 33.2).

Although Theorem 3 uses Gaussian gating functions, because of the mapping between Gaussian gating and soft-max gat-
ing functions, it also applies when the gating functions are of form (4). An alternative denseness result to Theorem 3 is that
of Jiang and Tanner (1999a), which is difficult to state but can also be applied to MoE models with GLM experts.

3.2 | Maximum quasi-likelihood estimation

Let Ξif gni=1 be an independent and identically distributed (IID) random sample of n 2 ℕ observations from some DGP that
can be characterized by the PDF f0(ξ) and where the conditional relationship between each response Yi given input Xi (i 2 [n])
can be characterized by the conditional PDF f0(y| X = x). Further, let ξif gni=1 be some fixed observation of Ξif gni=1. For
some fixed g 2 ℕ, and without knowledge of either f0(ξ) and f0(y| X = x), suppose that we wish to estimate the MoE model
of form (3), for some class of gating and expert functions, that best approximates f0(y| X = x). As proposed by Zeevi

et al. (1998) (see also White, 1982), we can do so by obtaining the MQL estimator θ̂n: a local maximizer of the log-quasi-
likelihood function

Qn θð Þ =
Xn
i=1

logMoE yijxi;θð Þ: ð12Þ

Often, the task of obtaining a local maximizer of (12) can be difficult. For example, we cannot obtain closed form solu-
tions to the usual first-order condition (FOC) for differentiable functions when the gating functions are of form (4) and the
experts are of form (6). As such, iterative or numerical schemes are often employed to conduct maximization. In Nguyen
and McLachlan (2014) and Nguyen and McLachlan (2016), the authors considered the blockwise-MM (minorization–
maximization) algorithm framework of Lange (2016); see Nguyen, 2017 for a concise tutorial on MM algorithms.

3.3 | Minorization–maximization algorithms

The blockwise-MM algorithm framework can be described as follows. Suppose that we have some objective function Ω(u),
where

u> = u>1 ,…,u>k
� �2U=

Yk
j=1

Uj �
Yk
j=1

ℝdk ,

for some k 2 ℕ, where Ω(u) is difficult to maximize (e.g., due to lack of closed form FOC or lack of differentiability). Here,
dk 2 ℕ for each j 2 [k]. Suppose that in each coordinate j, there exists a function Mj(uj; v) that is easy to manipulate, such

that (B1) Mj(vj; v) = Ω(v) and (B2) Mj(uj; v) ≤ Ω(w), where w> = v>1 ,…,v>j−1,u
>
j ,v

>
j+1,…,v>k

� �
, for all v> = v>1 ,…,v>k

� �2U.
We say that Mj(uj; v) is the jth blockwise minorizer of Ω(v) at v, or that Mj(uj; v) minorizes Ω(v) at v with respect to the jth
coordinate.
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Construct a blockwise-MM algorithm by firstly initializing it with some value u(0). Next, at the rth iteration of the algo-

rithm (r 2 ℕ), set u rð Þ
j to

u rð Þ
j =

arg maxuj2Uj Mj uj;u r−1ð Þ� �
if j= r mod kð Þ+1,

u r−1ð Þ
j otherwise,

(
ð13Þ

for each j 2 [k], and then set u rð Þ> = u rð Þ>
1 ,…,u rð Þ>

k

� �
. From (B1), (B2), and rule (13), we obtain

Ω u r−1ð Þ� �
=M r mod kð Þ+1 u r−1ð Þ

r mod kð Þ+1
;u r−1ð Þ

� �
≤M r mod kð Þ+1 u rð Þ

r mod kð Þ+1
;u r−1ð Þ

� �
≤Ω u rð Þ� � : ð14Þ

The sequence of inequalities (14) indicates that the sequence of blockwise-MM iterates {u(r)} generates a sequence of
objective evaluates {Ω(u(r))} that is monotonically increasing in r.

Denote directional derivative of F(u) in the direction of δ by

Ω0
δ uð Þ= liminf

λ#0
Ω u+ λδð Þ−Ω uð Þ

λ
,

and define a stationary point of Ω(u) as any point u* such that Ω0
δ u*ð Þ≥ 0 for all δ such that u* + δ2U. For all j 2 [k], make

the following assumptions: (C1) Mj(uj; u) = Ω(u), for all u2U; (C2) Mj(uj; v) ≤ Ω(w), for all uj 2Uj and v2U;
(C3) M 0

j,δj uj,v
� �

uj = vj
=Ω0

δ vð Þ, for all δ> = 0>,…,δ>j ,…,0>
� �

such that uj + δj 2Uj; and (C4) Mj(uj; v) is continuous in

u>j ,v
>

� �
, for each j 2 [k]. Assumptions (C1)–(C4) are validated if each Mj(uj; v) is continuous and differentiable in

u>j ,v
>

� �
, and are blockwise minorizers that fulfill assumptions (B1) and (B2).

Say that a function Ω(u) is regular at a point v2U if we have Ω0
δ vð Þ≥ 0 for all δ> = δ>1 ,δ

>
2 ,…,δ>k

� �
with Ω0

δ0k
vð Þ≥ 0,

where δ0>j = 0>,…,δ>j ,…,0>
� �

and vj + δj 2Uj, for all j 2 [k]. Further say that u* is a coordinate-wise maximum of Ω(u) if

u* 2U satisfies Ω u* + δ0j

� �
≤Ω u*ð Þ, for every j 2 [k] and δ0j such that u* + δ0j 2U. Let u ∞ð Þ = limr!∞ u rð Þ be the limit

point of a blockwise-MM algorithm defined via the update rule (13). The following theorem is available from Razaviyayn,
Hong, and Luo (2013).

Theorem 4: For all j 2 [k], assume that Mj(uj; v) is quasi-concave in uj 2Uj, for fixed v2U, and fulfills Assumptions
(C1)–(C4). Further assume that there is a unique solution to the problem:

argmaxuj2Uj Mj uj;v
� �

,

for each j, for any v2U. If u(∞) is a limit point of a blockwise-MM algorithm defined by rule (13), then u(∞)is a coordinate-
wise maximum of Ω(u). Furthermore, if u(∞)is regular, then u(∞)is a stationary point of Ω(u).

Theorem 4 states that under some generous conditions, limit points of the blockwise-MM algorithm that are defined by
rule (13) are stationary points of the objective. Furthermore, the convergence towards these stationary points is monotoni-
cally increasing in nature, with respect to the sequence of objective evaluations.

We furthermore note that global convergence results are also available for generalized blockwise-MM algorithms, where
the iterates satisfy the relationships Mj(u

(r); u(r − 1)) ≥ Mj(u
(r − 1); u(r − 1)) (for j 2 [k]), but where u(r) does not satisfy rule

(13). In such cases, the algorithm retains its monotonicity with respect to the sequence of objective evaluations. It can further
be shown that the limit points globally converge to a fixed-point via results such as that of Meyer (1976). However, the
nature of the fixed-points cannot be stated in general and must be established on a case-to-case basis. As Theorem 4 is gener-
ally sufficient, we will not engage in further discussions of such results.

3.4 | An MM algorithm for the MQL estimation of an example MoE model

We consider the MQL estimation of an MoE model with soft-max gating functions and Gaussian regression experts from

NGUYEN AND CHAMROUKHI 7 of 21



data ξif gni=1, where ξ
>
i = x>i ,yi

� �2ℝp ×ℝ. Using characterization (3), the MoE model can be written as

MoE yjx;θð Þ =
Xg
z=1

Gatez x;γð ÞExpertz yjx;ηz
� �

=
Xg
z=1

exp αz0 +α>
z x

� �
Xg
ζ=1

exp αζ0 +α>
ζ x

� �ϕ y;β0z + β>z x,σ
2
z

� �
,

where β0z 2 ℝ, βz 2 ℝp, σ2z >0, and η>z = βz0,β
>
z ,σ

2
z

� �
, for each z 2 [g]. The log-quasi-likelihood function can then be writ-

ten as

Qn θð Þ=
Xn
i=1

log
Xg
z=1

exp αz0 +α>
z xi

� �
Pg
ζ=1

exp αζ0 +α>
ζ xi

� �ϕ yi;β0z + β>z xi,σ
2
z

� �
: ð15Þ

We observe that although (15) is smooth in all coordinates of θ, it is in the log-sum-exp form and thus a closed form
solution to the usual FOC cannot be obtained. We thus turn to constructing a blockwise-MM algorithm for obtaining suitable
roots of (15).

Let u and v be such that uj > 0 and vj > 0 for each j 2 [k]. We can minorize F uð Þ= log
Pk

j=1uj in all coordinates, simul-

taneous, by the minorizer

M u;vð Þ=
Xk
j=1

vjPk
z=1

vz

log uj−
Xk
j=1

vjPk
z=1

vz

log
vjPk

z=1
vz

, ð16Þ

from Zhou and Lange (2010). Applying (16), we obtain the minorizer

R θ;θ r−1ð Þ
� �

=
Xn
i=1

Xg
z=1

τz ξi;θ
r−1ð Þ

� �
αz0 +α>

z xi
� �

−
Xn
i=1

log
Xg
ζ=1

exp αζ0 +α>
ζ xi

� �
−
1
2

Xn
i=1

Xg
z=1

τz ξi;θ
r−1ð Þ

� �
log σ2z

−
1
2

Xn
i=1

Xg
z=1

τz ξi;θ
r−1ð Þ

� � y−β0z−β>z xi
� �2

σ2z

, ð17Þ

at θ(r − 1) (in all coordinates), where

τz ξ;θð Þ= Gatez xi;γð ÞExpertz yijxi;ηz
� �

MoE yijxi;θð Þ ,

and

C θ r−1ð Þ
� �

= −
n
2
log 2π−

Xn
i=1

Xg
z=1

τz ξi;θ
r−1ð Þ

� �
logτz ξi;θ

r−1ð Þ
� �

,

is a constant that does not depend on θ.

Define ex>i = 1,x>i
� �

, for each i 2 [n], and eα>
z = α0z,α>

z

� �
and eβ>z = β0z,β

>
z

� �
, for each z 2 [g]. We can rewrite (17) as

R θ;θ r−1ð Þ
� �

=R0 θ;θ r−1ð Þ
� �

+Rg θ;θ r−1ð Þ
� �

+C θ r−1ð Þ
� �

,

where

R0 θ;θ r−1ð Þ
� �

=
Xn
i=1

Xg
z=1

τz ξi;θ
r−1ð Þ

� �eα>
z exi

−
Xn
i=1

log
Xg
ζ=1

exp eα>
ζ exi� � ,
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and

Rg θ;θ r−1ð Þ
� �

= −
1
2

Xn
i=1

Xg
z=1

τz ξi;θ
r−1ð Þ

� �
log σ2z

−
1
2

Xn
i=1

Xg
z=1

τz ξi;θ
r−1ð Þ

� � y−eβ>z exi� �2

σ2z
:

Let θ> = θ>1 ,…,θ>g
� �

be a partitioning of the coordinates of θ, where θz = eα>
z , for z 2 [g − 1], and

θ>g = eβ>1 ,…,eβ>g ,σ21,…,σ2g
� �

. For twice differentiable and concave functions Ω(u), Bohning and Lindsay (1988) proposed the

minorizer at v (in all coordinates)

M u;vð Þ=Ω vð Þ+ u−vð Þ>rΩ vð Þ+ 1
2
u−vð Þ>H u−vð Þ, ð18Þ

where H − Hess(F)(u) is negative semi-definite for all u2U and H is positive definite. Here, r(�) is the gradient operator
and Hess(�) is the Hessian operator. Let

Rz θz;θ rð Þ
� �

=R0 ϑ r−1ð Þ
z ;θ r−1ð Þ

� �
,

where ϑ r−1ð Þ> = θ r−1ð Þ>
1 ,…,θ r−1ð Þ>

z−1 ,θ>z ,θ
r−1ð Þ>
z+1 ,…,θ r−1ð Þ>

g−1 ,θ r−1ð Þ>
g

� �
. Applying (18) to Rz(θz; θ

(r − 1)), we obtain the

coordinate-wise minorizer of (15):

Sz θz;θ r−1ð Þ
� �

=R0 θ r−1ð Þ;θ r−1ð Þ
� �

+rRz θz;θ r−1ð Þ
� �

θz = θ r−1ð Þ
z

−
1
8

θz−θ r−1ð Þ
z

� �>
H θz−θ r−1ð Þ

z

� �
+Rg θ r−1ð Þ;θ r−1ð Þ

� �
+C θ r−1ð Þ

� � , ð19Þ

for each z 2 [g − 1], where H=
Pn

i=1 exiex>i and

rRz θz;θ r−1ð Þ
� �

=
Xn
i=1

τz ξi;θ
r−1ð Þ

� �
−Gatez xi;eγ r−1ð Þ

z

� �h iexi:
This is obtained by noting that

Hess Rzð Þ θz;θ r−1ð Þ
� �

= −
Xn
i=1

Gatez xi;eγ r−1ð Þ
z

� �
1−Gatez xi;eγ r−1ð Þ

z

� �h iexiex>i ,
where eγ r−1ð Þ>

z = θ r−1ð Þ>
1 ,…,θ r−1ð Þ>

z−1 ,θ>z ,θ
r−1ð Þ>
z+1 ,…,θ r−1ð Þ>

g−1

� �
, and that a(1 − a) ≤ 1/4 for any a 2 (0, 1).

Notice that (19) is a quadratic and thus is concave and has a unique maximizer with respect to θz. We can obtain the
maximizer by solving the FOC rSz(θz; θ

(r − 1)) = 0, which yields the solution

θ rð Þ
z =4×H−1rRz θz;θ r−1ð Þ

� �
θz = θ r−1ð Þ

z

+ θ r−1ð Þ
z , ð20Þ

to the problem

argmaxθz Sz θz;θ r−1ð Þ
� �

,

for each z 2 [g − 1]. Recall that eαg = 0 and thus does not require updating.
Next, a minorizer of (15) in θg can be obtained by simply holding all other coordinates constant. That is,

Sg θg;θ r−1ð Þ
� �

=R0 θ r−1ð Þ;θ r−1ð Þ
� �

+Rg ϑ r−1ð Þ
g ;θ r−1ð Þ

� �
+C θ r−1ð Þ

� �
,

is a coordinate-wise minorizer of (15) in θg. The quasi-concavity of Sg(θg; θ
(r − 1)) and the solution to its FOC rSg(θg; θ

(r − 1))
= 0 can be obtained via slight modifications to the results of Nguyen and McLachlan (2015). For completeness, the solution

θ rð Þ
z containing

NGUYEN AND CHAMROUKHI 9 of 21



eβ rð Þ
z =

Xn
i=1

τz ξi;θ
r−1ð Þ

� �exiex>i
" #−1Xn

i=1

τz ξi;θ
r−1ð Þ

� �
yiexi, ð21Þ

and

σ2 rð Þ
z =

Pn
i=1

τz ξi;θ
r−1ð Þ

� �
yi−eβ rð Þ>

z exi� �2

Pn
i=1

τz ξi;θ
r−1ð Þ

� � , ð22Þ

for each z 2 [g], uniquely solves the problem

argmaxθg Sg θz;θ r−1ð Þ
� �

:

Together updates (20)–(22) can be applied within rule (13) in order to generate a blockwise-MM algorithm for obtaining
the MQL estimator of (15). Since all blockwise solutions are unique and each blockwise minorizers is quasi-concave, we
obtain the full conclusion of Theorem 4, as the objective function is smooth and thus regularity is not an issue.

For each initialization θ(0), the blockwise-MM algorithm tends towards a single solution. Unfortunately, like many
mixture-type models, the log-quasi-likelihood of MoE models tend to be highly multimodal. As such, numerous initializa-
tions should be considered in order to locate a good local maximizer, which can then be considered as candidates for the
MQL estimator. One technique for choosing good initializations is that of McLachlan (1988).

We note that although we have derived an algorithm that is entirely within the MM framework, it is possible to replace
some of the updates with numerical or alternative optimization schemes that are outside of the MM paradigm. For example,
in Ng and McLachlan (2004), a Newton procedure was utilized to update θz for each z 2 [g − 1], upon firstly minorizing
(15) by (16). As long as the alternative schemes yields solutions that satisfy rule (13) for some notion of blockwise minoriza-
tion functions, the resulting hybrid blockwise-MM algorithms that are produced will retain the desirable properties bestowed
by Theorem 4.

3.5 | Asymptotic properties of the maximum quasi-likelihood estimator

We now consider the asymptotic properties of the MQL estimator. The consistency and asymptotic normality of the MQL
estimator for the MoE model with Gaussian experts was proved in Zeevi et al. (1998). Further results for GLM experts were
obtained in Jiang and Tanner (2000). We shall provide a general scheme for deriving such results for arbitrary MoE models,
using the extremum estimation concept of Amemiya (1985).

Let Ωn(u) = Ω(u; Ξ1, …, Ξn) be an arbitrary objective function that takes random inputs Ξif gni=1 and is parameterized
by θ. Suppose that we wish to obtain the properties of the extremum estimator

ûn = argmaxu2UΩn uð Þ, ð23Þ
for some Euclidean subset U�ℝd (d 2 ℕ). Suppose that there is some u0 that naturally connects Ωn(u) to the DGP of
Ξif gni=1. We say that ûn is consistent if it converges to u0 in probability. The following theorem of Amemiya (1985) pro-
vides a simple set of assumptions that can be used to establish the consistency of (23).

Theorem 5: Make the following assumptions: (D1) let U be open; (D2) let Ωn(u) be measurable in Ξif gni=1 for all u2U,
and let rΩn(u) exist and be continuous in an open neighborhood of u0 2U; and (D3) let n−1Ωn(u) converge to a non-
stochastic function Ω(u) in probability uniformly in u, in an open neighborhood of u0, and let Ω(u) attain a strict local maxi-
mum at a root u0. If (D1)–(D3) are fulfilled and

Un = u :rΩn uð Þ= 0 andu is a strict local maximumf g , ð24Þ
then

lim
n!∞

ℙ inf
u2Un

u−u0k k> ϵ
� �

=0,

for any ϵ > 0. Here, Un = arbitrary element of Uf g when definition (24) results in the empty set.

The conclusion of Theorem 5 is that there exists a consistent root, u0, that is a local maximizer of the objective function
Ωn(u). The result is useful in MoE modeling due to the general lack of universal identifiability of MoE models (cf. Jiang &
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Tanner, 1999b), which leads to multiple roots corresponding to the same underlying DGP. Furthermore, the result is also
useful due to the highly multimodal nature of MoE log-quasi-likelihood functions. We note that in general, it is not obvious
which of many roots is the consistent one that leads to the best approximation of the underlying DGP. Following a sugges-
tion of Amemiya (1985), we can gain some confidence regarding a particular root based on its reasonability from a scientific
or contextual perspective, or if it is the limit point of an algorithm when initialized from numerous starting points. A theoreti-
cal method for choosing between multiple roots in MQL estimation was proposed by Gan and Jiang (1999). Upon establish-
ing the consistency of a root ûn, we can then deduce its asymptotic normality via the following theorem of Amemiya (1985).

Theorem 6: Make the following assumptions: (E1) let Hess(Ωn)(u) exist and be continuous in a convex neighborhood of
u0; (E2) let n−1 Hess Ωnð Þ u*n

� �
converge to a finite and non-singular matrix

I1 u0ð Þ= lim
n!∞

En−1 Hess Ωnð Þ u0ð Þ,

in probability for any sequence u*n that converges to u0 in probability; (E3) let n−1=2rΩn uð Þju=u0 be asymptotically normal
with mean 0 and covariance matrix I2(u0), where

I2 u0ð Þ= lim
n!∞

En−1rΩn uð Þju= u0r>Ωn uð Þu= u0
:

If ûnf g∞
n=1 is a sequence that is obtained by choosing an element from Un, for each n 2 ℕ, such that ûn converges to u0

in probability, then n−1=2 ûn−u0ð Þ is asymptotically normal with mean 0 and covariance matrix

I u0ð Þ= I−1
1 u0ð ÞI2 u0ð ÞI−1

1 u0ð Þ:
Theorem 6 allows for the construction of asymptotic hypothesis tests and confidence intervals regarding the obtained

consistent root ûn. Such tests and intervals can be constructed via results such as those from Hayashi (2000, Sec. 7.4). For
the purpose of hypothesis testing, knowledge of u0 is assumed. However, when constructing confidence intervals, the DGP
is generally unknown. Thus, one must estimate I(u0) in such constructions. When Ωn uð Þ=Pn

i=1ω Ξi;uð Þ, a natural estimator
for I(u0) is

În ûnð Þ= Î
−1
1,n ûnð ÞÎ2,n ûnð ÞÎ−1

1,n ûnð Þ, ð25Þ
where

Î1,n ûnð Þ= n−1
Xn
i=1

Hess ωð Þ Ξi; ûnð Þ,

and

Î2,n ûnð Þ= n−1
Xn
i=1

rω Ξi;uð Þju= ûnr>ω Ξi;uð Þu= ûn
:

Results such as the one of Boos and Stefanski (2013, Thm. 7.3) can be used to establish the validity of (25).
Fix g 2 ℕ and let U be the space of valid values that θ can take in the log-quasi-likelihood function 15. Set Ωn(θ) =

Qn(θ) and let Qn θð Þ=Pn
i=1q θ;Ξið Þ, where q(θ; ξi) = log MoE(yi| xi; θ) with gating function and experts as per Section 3.4

(the MoE model has gating functions of form (4) and the experts are of form (6)). For convenience, suppose that Ξif gni=1 is
an IID sample from a DGP with continuous PDF over a compact support. By definition of the MoE model and its parameter
vector θ, the space of valid values U is an open subset of a Euclidean space and hence validates assumption (D1). Since the
MoE is constructed from gating functions of form (4) and experts of form (6), it is continuously differentiable, and thus its
logarithm is also continuously differentiable. Since the PDF of Ξi is continuous and the support is compact, Ωn(θ) is also
measurable, thus validating (D2). Since the PDF of Ξi is continuous and the support is compact, and since Ξif gni=1 is an IID
sample, it is procedural to validate (D3) for Ω θð Þ=Eq Ξi;θð Þ via a uniform law of large numbers such as that of Jennrich

(1969). We therefore obtain the conclusion of Theorem 5 for the MQL estimator θ̂n of the MoE model from Section 3.4.
Further, we note that the MoE model above also has continuous Hessian for all valid inputs from U and thus (E1) is

valid. Assumption (E3) is valid because (D3) implies that u0 solves rEq Ξi;θð Þ= 0 and because we can swap the gradient
and expectation operator since the PDF of Ξi is continuous and the support is compact. An application of the multivariate
central limit theorem yields the desired result. Finally, we must make assumption that EHess qð Þ Ξi;θ0ð Þ is non-singular in
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order to validate (E2). Such an assumption is standard in the literature and cannot be done away with in general. We there-

fore have the conclusion of Theorem 6 for the MQL estimator θ̂n of the MoE model from Section 3.4.

3.6 | Choice of number of components

Thus far, we have assumed that the number of experts (components) g 2 ℕ is some known constant. However, in reality, its
value in the best MoE approximation of the DGP is unknown, as well as the value of the parameter vector θ. In the literature,
a popular method for choosing the value of g among many candidates is to use an information criterion such as Akaike infor-
mation criterion (AIC; Akaike, 1974), the Bayesian information criterion (BIC; Schwarz, 1978), or the Integrated complete-
likelihood information criterion (ICL; Biernacki, Celeux, & Govaert, 2000).

The aforementioned criteria have been implemented in articles such as Grun and Leisch (2007), Grun and Leisch (2008),
Chamroukhi et al. (2009), and Nguyen and McLachlan (2016). It is notable that until recently, the only theoretical justifica-
tion for any of these criteria is for the BIC, which was demonstrated to be consistent in Olteanu and Rynkiewicz (2011). The
MoE model results from Olteanu and Rynkiewicz (2011) can be viewed as extensions of the marginal mixture model results
from Keribin (2000). Unfortunately, the result of Olteanu and Rynkiewicz (2011) is difficult to state concisely. A more
recent approach by Baudry (2015) allows for a much simpler statement of an information criterion consistency theorem.
Using the notation from Section 3.5, we paraphrase Baudry (2015, Thm. 8.1) below.

Theorem 7: Let Ug
� �G

g=1 be a set of parameter spaces, for any g 2 [G], such that Ug �ℝdg , where dg 2 ℕ for each g, and

d1 ≤ … ≤ dG. Further let

U g½ �
0 = u : u= argmaxu2UgEΩ uð Þ� �

,

for some On(u) = O(u; Ξ1, …, Ξn) that is a function of both u2Ug and Ξif gni=1. Make the following assumptions:
(F1) let

G0 = g : g= argmaxg2 G½ �EΩ u g½ �
0

� �
, u g½ �

0 2U g½ �
0

n o
,

and assume that g= minG0; (F2) for all g 2 [G], û g½ �
n 2U g½ �

n½ �, where

U g½ �
n½ � = u :Ωn uð Þ≥Ωn u g½ �

0

� �
,Ωn uð Þ!EΩ u g½ �

0

� �
in probability

n o
;

(F3) for all g 2 [g], define penn(g) to be such that penn(g) > 0, n−1penn(g) ! 0 in probability, as n ! ∞, and

penn gð Þ−penn g*
� �! ∞ ,

in probability, as n ! ∞, when g > g*; (F4)

Ωn û g0½ �
n

� �
−Ωn û g½ �

n

� �
!C,

in probability, where C is a constant, for any g2G0. If (F1)–(F4) are fulfilled and if selection of g is based upon the generic
information criterion:

ĝn = min g : g= argmaxg2 G½ � Ωn û g½ �
n

� �
−penn gð Þ

h in o
, ð26Þ

then ℙ ĝn 6¼ g0ð Þ! 0 as n ! ∞.
Twice the negative of Ωn u g½ �

n

� �
−penn gð Þ, in (26), is often referred to as the information criterion. Although tedious, the

assumptions of Theorem 7 are generally valid. Assumption (F1) states that we are searching for a parsimonious model, and
(F2) is valid if the hypothesis of Theorem 5 are valid for each g 2 [G]. Assumption (F3) states that the constructed informa-
tion criterion must involve a penalty (at the discretion of the investigator) that becomes smaller as more observations are
observed and that is capable of ordering different complexities of models. Assumption (F4) is difficult to rationalize,
although it can be validated by application of Baudry (2015, Cor. 8.2).

Consider the penalty

penn gð Þ= dim θð Þ log n, ð27Þ
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where dim(�) computes the dimension (i.e., number of elements) of a vector. This is the BIC penalty function. For the soft-
max gated mixture of Gaussian regression experts, we can show that

dim θð Þ= 3+2pð Þg−p−1:

We can validate (F3) by noting that limn!∞ n−1 log n=0 and that log n is strictly increasing. Using Baudry (2015, Cor.
8.2) to validate (F4), and the assumptions made in the example from Section 3.5 to validate (F2), we can show that the BIC
(i.e., rule (26) with penalty (27)) consistently selects the most parsimonious MoE model with gating functions of form (4)
and experts of form (6), with respect to number of components g.

4 | APPLICATIONS OF MIXTURE-OF-EXPERTS MODELS

The three primary applications of a statistical model are to conduct classification, clustering, and regression. Here, we refer
to classification as the conduct of supervised learning using labeled data Ξif gni=1, where Y 2 [K], and then assessing the suc-
cess of the learnt discriminant model via some additional unlabeled data. The problem of clustering is take some unlabeled
data Xif gni=1 set and to sort the observations into similarity groups, where the individual observations in each group are close
in some sense, and the individuals between the groups are sufficiently different. Lastly, the problem of regression is to pro-
duce a feasible conditional probabilistic relationship between the data Yi and Xi (i 2 [n]), given some observed sample
Ξif gni=1. There are numerous examples of applications of MoEs to all three problems in the literature. We refer the reader to
Yuksel et al. (2012) for an bibliographical reference.

4.1 | Classification

We can conduct classification via MoE modeling by using an MoE model with multinomial logistic experts. That is, suppose
that we observe data Ξif gni=1, where Ξ>

i = X>
i ,Yi

� �2X× K½ �, for some K 2 ℕ. Conditioned on Xi = xi, suppose that the
PMF of Yi can be best approximated by an MoE of form (3) with multinomial logistic expert functions of form

Expertz yjx,ηz
� �

=
YK
l=1

exp βzl0 + β>zlx
� �

PK
ℓ=1

exp βzℓ0 + β>zℓx
� �

26664
37775

I y= lð Þ

, ð28Þ

where βzl0 2 ℝ and βzl 2 ℝp for each z 2 [g] and l 2 [K − 1], and βzK0 and βzK = 0 for each z 2 [g]. We set

η>z = βz10,β
>
z1,…,βz,K−1,0,β

>
z,K−1

� �
,

for each z. Here, I Að Þ is the indicator function that takes value 1 if proposition A is true and 0 otherwise.
Respectively, let g0 and θ0 be the number of components and parameter vector that best approximates the DGP of inter-

est. The MoE model of form (3), with experts of form (28), has the probabilistic interpretation

ℙ Y = yjX= xð Þ=MoE yjx;θ0ð Þ: ð29Þ
Let d> = (x>, y) be an arbitrary data point that is generated via the same DGP as that of interest, and suppose that we

only have knowledge of x and wish to estimate y. Using interpretation (29), we can obtain the MAP (maximum a posteriori
probability) rule for classification:

ŷ = argmaxy2 K½ �MoE yjx;θ0ð Þ

= argmaxy2 K½ �
Xg0
z=1

Gatez x;γ0ð ÞExpertz yjx;η0,z
� �

:

If g0 and θ0 are unknown, then we can estimate these quantities by ĝn and θ̂n, respectively, in order to obtain the plugin-
MAP rule

ŷ = argmaxy2 K½ �MoE yjx; θ̂n
� �

= argmaxy2 K½ �
X̂gn
z=1

Gatez x; γ̂nð ÞExpertz yjx; η̂n,z
� �

:
ð30Þ
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Decision theoretic justification for the MAP and plugin-MAP rules for classification are detailed in McLachlan (1992).

4.2 | Clustering

When conducting clustering, we assume that our data Ξif gni=1 arises from a DGP that can be best characterized by an MoE
model, which is defined via the hierarchical construction that is characterized by Equations (1)–(3). That is, we assume that
each Ξi has a latent label Zi 2 [g] that determines which of the g experts of form (2) that it was generated from.

Let d be an arbitrary data point that is generated via a DGP that is best characterized by the g0-component MoE (3) with
some parameter vector θ0. Suppose that we wish to estimate Z, the expert from which d was generated. As in Section 4.1,
we can utilize a pair of MAP rule, depending on the nature of the clustering problem. The MAP rules for clustering are to
estimate Z by

ẑ= argmaxz2 g½ �
Gatez x;γð ÞExpertz yjx;ηz

� �
MoE yjx;θð Þ ,

which is equivalent to estimating Z by

ẑ= argmaxz2 g½ �ℙ Z = zjXi = xi,Y i = yið Þ,
or by

ẑ= argmaxz2 g½ �Gatez x;γð Þ,
which is equivalent to

ẑ= argmaxz2 g½ �ℙ Z = zjXi = xið Þ:
The estimation of the number of clusters experts, or clusters in such an application, can be conducted via the technique

of Section 3.6. Furthermore, in general, we do not know the parameter vector θ0 and thus we must estimate by the MQL esti-

mator θ̂n from a realization of Ξif gni=1. Using the estimated number of clusters (components) ĝn and the MQL estimator for

the MoE model with ĝn clusters θ̂n, we obtain the plugin-MAP rules for clustering:

ẑ= argmaxz2 ĝn½ �
Gatez x; γ̂nð ÞExpertz yjx; η̂n,z

� �
MoE yjx; θ̂n

� � , ð31Þ

and

ẑ= argmaxz2 ĝn½ �Gatez x; γ̂nð Þ: ð32Þ

4.3 | Regression

Suppose now that we do not care that the DGP can be characterized via the hierarchical construction of Equations (1)–(3),
but only that the conditional relationship between the response Y given input X = x has form (3), for some parameter vector
θ0. We are often interested in using form (3) in order to estimate some functionals of the DGP of d such as the mean
E YjX= xð Þ or higher moments. For example, in the case where the gating function is of form (4) and the expert arises from
a location-scale family of conditional density functions, we can write E YjX= xð Þ in form (9).

Since the form of the MoE that best approximate the DGP of d is often unknown, we must estimate it via the realization
of some random sample Ξif gni=1. Often both the number of components g0 and the parameter vector θ0 require estimation.
As in Sections 4.1 and 4.2, g0 can be estimated via ĝn, obtained via the technique from Section 3.6, and θ0 can be estimated

by the MQL estimator θ̂n.
Upon obtaining the estimators above, conditional moment functions can be easily computed. For example, if

E H Yð ÞjX= x½ � exists, for some real-valued function H(y) of y2Y, then

E H Yð ÞjX= x½ �=
Xg0
z=1

Gatez x;γ0ð Þ
ð
Y
H yð ÞExpertz yjx;η0,z

� �
dy, ð33Þ

and can be estimated by

Ê H Yð ÞjX= x½ �=
X̂gn
z=1

Gatez x; γ̂nð Þ
ð
Y
H yð ÞExpertz yjx; η̂n,z

� �
dy:
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We can obtain Equation (9) by making the substitution H(Y) = Y into (33) for an MoE with soft-max gating functions
and location-scale experts. If the conditional variance function of each expert is constant and equal to σ2z for each z 2 [g], we
can write the variance function of the response Y, given the input X = x, as

var Y jX= xð Þ=
Xg0
z=1

Gatez x;γ0ð Þ βz,0 + β>z x
� �2

+ σ2z

h i
− E Y jX= xð Þ½ �2:

Furthermore, we can estimate var(Y| X = x) by

cvar Y jX= xð Þ=
X̂gn
z=1

Gatez x; γ̂nð Þ β̂z,0 + β̂
>
z x

� �2
+ σ̂

2

z

� �
− Ê Y jX= xð Þ� 	2

:

Confidence intervals can also be constructed about any regression function. For example, see Nguyen and McLachlan
(2014) regarding the construction of asymptotic confidence intervals around the mean function of an MoE model using the
asymptotic normality conclusion of Theorem 6.

5 | CASE STUDIES

To demonstrate the applications of MoE models that are described in Section 4, we present the two following examples. We
note that all computation for both examples are performed within the R programming environment (R Core Team, 2016) via
the flexmix package of Grun and Leisch (2008), which allows for estimation of generic MoE models with soft-max gating
functions. The optimization procedures utilized in flexmix are hybrid MM algorithms for MQL estimation and are described
in Grun and Leisch (2008).

5.1 | Three-class problem

We generate data ξif gni=1 from the three-class problem of Chen et al. (1999) and Ng and McLachlan (2004). In the three-

class problem, each data point d>i = x>i ,yi
� �

consists of the input xi = (xi1, xi2), which is a realization of a random variable

X>
i = Xi1,Xi2ð Þ, where Xij is uniformly distributed over the interval [−5, 5], for each i 2 [n] and j 2 {1, 2}. Depending on

Xi = xi, the value of the response is a categorical variable Yi 2 [3], such that Yi = 1 by default, unless Xi is within a ball of
radius two around the origin, in which case Yi = 2, or if Xi is within the square with corners (−4, 4) and (−2, 2) or the
square with corners (2, 2) and (4, 4), in which case Yi = 3. A visualization of a realization of an n = 1000 observations sam-
ple from the three-class problem is provided in Figure 2. From the sample, we obtain 759, 156, and 85 observations, with
category labels yi = 1, 2, 3, respectively.

In order to construct a classifier, based on the sample of n = 1000 observations from Figure 2, we estimate soft-max
gated MoE models with multinomial logistic experts for K = 3 classes, as per Section 4.1, with varying numbers of compo-
nents g 2 [9]. The BIC values (i.e., twice the negative of the log-quasi-likelihood subtract the penalty of form (27)) for each
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FIGURE 2 A realization of an n = 1000 observations sample from the three-
class problem. The plot symbols indicate the class label
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g, obtained via MQL estimation, are plotted in Figure 3. From the figure, we observe that the best MoE model is that with
ĝn =4 components. Applying rule (30), we obtain a classification accuracy of 91.4% using the fitted MoE model classifier.

In order to better assess the performance of the MoE model classifier, defined by rule 30, we generate a new sample of
n = 2500 observations from the sample process as described above. Using the fitted classifier, we obtain a test set accuracy
rate (on the new sample) of 90.1%. A plot of the new sample along with the classifications via the MoE model classifier is
displayed in Figure 4.

From Figure 4, we can obtain a visualization of the decision boundaries upon which the classification rule (30) assigns
new point. We can see that the decision boundaries are not perfect fits to the rigid shapes of the true label boundaries of the
DGP. However, upon inspection of Figure 2, we see that the classifier models the dense regions of each class very well. This
is especially apparent when inspecting the dense regions of observations with yi = 3 from the original sample. Also, where
the classifier decision boundary exceeds the circle that determines when yi = 2, we note that there are fewer observations
and thus the lack of fit in that region of the domain is explainable. Considering that the percentage of observations in the
training are 79.4%, 11.7%, and 8.9%, for yi = {1, 2, 3}, respectively, the classification rate of 90.1% is a good result.

5.2 | Switch operation power signals

In this example, we analyze a time series data set arising from electrical signals at a switching point on the French railway,
under a switching operation. The data were originally studied in Chamroukhi et al. (2009), Chamroukhi, Same, Govaert, and
Aknin (2010), and Same et al. (2011). An instance of such a signal, over a period of approximately 6 seconds, is presented
in Figure 5. The signals are measured at n = 550 equally-spaced time points xi (i 2 [n]) that are normalized to be in the unit
interval. We let yi be the measurement of the power at each time point xi, in Watts. Together ξif gni=1 forms our sample of

interest, where ξ>i = xi,yið Þ. We wish to model the power signals as a function of time.

2 4 6 8
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FIGURE 3 BIC values for g 2 [9] obtained from the MQL estimators on the
n = 1000 observations sample from Figure 2. The filled marker indicates the
best model obtained via rule (26)
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FIGURE 4 Plot of the additional n = 2500 observations sample from the three-
class problem. The plot symbols indicate the true class labels yi, i 2 [n]. The
color indicates the classification via the fitted MoE classifier, ŷi. Here, blue,
green, and red correspond to ŷi =1,2,3, respectively
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Upon observation, it is clear that the time series in Figure 5 is highly nonlinear. Following the analysis by Chamroukhi
et al. (2009), we model the DGP for the data via an MoE model with soft-max gating functions and quadratic-mean Gaussian
regression experts of form

Expertz yjx;ηz
� �

=ϕ y;β0z + β1zx+ β2zx
2,σ2z

� �
,

where η>z = β0z,β1z,β2z,σ
2
z

� �
, for z 2 [g]. Figure 6 displays the BIC for each g 2 [10], obtained via MQL estimation. Using

the optimal model with ĝn =8, we can obtain the MoE model that best approximates the DGP for the data, and the expecta-
tion curve for the MoE model, of form (9), is plotted in Figure 7. We observe that that the curve is a good fit for the data
and models its primary features, without being so specific as to model its idiosyncrasies.

As the data arises from an electrical control of a Railway switching point, it undergoes multiple stages of control. Each
of the ĝn =8 components from the obtained MoE model can be seen as one of these stages or sub-stages. We can utilize the
clustering rule (32) in order to assign each time point to one of these stages. Figure 8 displays the segments of the time series
that are assigned to each of the ĝn =8 components, along with the mean curve corresponding to the respective component.
We utilize clustering rule (32) instead of rule (31) as the different stages of control under a signal switching are entirely
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FIGURE 5 Instance of an electrical signal at a switching point, undergoing a
switching operation. The abscissa displays the time at which the signal is
measured (normalized to the unit interval) and the ordinate displays the value of
the signal, in Watts

2 4 6 8 10

40
00

45
00

50
00

55
00

Number of components

B
IC

FIGURE 6 BIC values for g 2 [9] obtained from the MQL estimators on the
n = 550 observations sample from the time series that is displayed in Figure 5.
The filled marker indicates the best model obtained via rule (26)
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FIGURE 7 The original signal is plotted as a solid curve and the fitted mean
function for the ĝn =8 component MoE model, of form (9), is plotted as a dotted
curve. The abscissa displays the time at which the signal is measured (normalized
to the unit interval) and the ordinate displays the value of the signal, in Watts
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time-based. Here, the modeling of the power curves is incidental in identifying the different stages of control, in time. Rule
(31) is more appropriate when clustering data that arise from multiple functions, with respect to time, that are pooled
together.

6 | CONCLUSIONS

MoE modeling is a powerful paradigm for approximating unknown DGPs, and for conducting classification, clustering, and
regression. We have demonstrated how MoE models can be constructed for different data types, and we have provided theo-
retical results regarding the accuracy by which MoE models can approximate arbitrary DGPs and their mean functions.

When faced with data from an unknown DGP, MQL estimation can be used to estimate MoE models that are best fitted
to the data in question. We have demonstrated that MQL estimation for MoE models can be conducted via blockwise-MM
algorithms, and we have provided conditions under which the MQL estimators are consistent and asymptotically normal. A
generic theorem is also provided for the construction of arbitrary information criteria for selecting the number of components
of an MoE model.

To demonstrate their usefulness, we provide details regarding the conduct of classification, clustering, and regression via
MoE models. Two examples have been provided to illustrate how these modes of application can be conducted in practice.

As with any review, summary, or tutorial article, we have omitted some details and topics for the sake of brevity and
flow. A set of interest topics that we have omitted are works regarding the application of MoE models to the modeling of sta-
tionary time series processes, variable selection in MoE models via regularization, and finite sample model selection in MoE
models. For the interested reader, we provide some details regarding these topics and the relevant literature, below.

The use of MoE for stationary time series modeling was first explored by Zeevi, Meir, and Adler (1999) who considered
MoE models with soft-max gating functions and Gaussian autoregressive experts. The model of Zeevi et al. (1999) was fur-
ther investigated in Carvalho and Tanner (2005a) alongside generic autoregressive expert functions. The family of MoE
models with autoregressive GLM experts is explored in Carvalho and Tanner (2005b). A detailed investigation of the MoE
model with autoregressive Poisson experts appears in Carvalho and Tanner (2007). A robust model using autoregressive
Student-t experts is considered in Carvalho and Skoulakis (2010). The use of hierarchical MoE models for modeling of uni-
variate and multivariate time series process was investigated in Huerta, Jiang, and Tanner (2003) and Prado, Molina, and
Huerta (2006), respectively. Recent applications of Gaussian-gated MoE models for univariate and multivariate time series
process appear in Kalliovirta, Meitz, and Saikkonen (2015) and Kalliovirta, Meitz, and Saikkonen (2016), respectively.

In our exposition, we have left out details regarding variable selection in MoE models with regression experts due to the
topic being overly specific and because we cannot do it justice within the confines of this article. There has been a lot of
recent interest in the topic of sparse variable selection via model regularization, that extend upon the pioneering work of Tib-
shirani (1996) and Fan and Li (2001). In the context of mixture modeling, studies regarding the performance of such estima-
tors under various assumptions on underling DGPs can be found in Khalili and Chen (2007), Stadler, Buhlmann, and van de
Geer (2010), and Khalili and Lin (2013). Extensions of these regularization results to MoE models remain a recent area of
interest and appear in Khalili (2010), Peralta and Soto (2014), and Shohoudi, Khalili, Wolfson, and Asgharian (2016).

We note that the information criteria approach from Section 3.6 is not the only available paradigm for choosing the num-
ber of components in an MoE model. Recent works by Cohen and Le Pennec (2014) and Montuelle and Le Pennec (2014)
have demonstrated that the finite-sample variable selection approach of Massart (2007) can be adapted for use in the MoE
context. Unfortunately, both works are limited to model selection for MoE models with Gaussian regression experts, only.
An interesting future direction is to extend these works to construct model selection rules for general MoE models.
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FIGURE 8 Each of the segments is colored in one of ĝn =8 colors, and are
plotted as solid curves. The dotted curves visualize the mean function of the
corresponding MoE model component that the segment is clustered to. The
abscissa displays the time at which the signal is measured (normalized to the unit
interval) and the ordinate displays the value of the signal, in Watts
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Lastly, although we focus only on ML estimation of MoE models, there are other frameworks under which estimation
can be conducted. Some examples of alternative frameworks include least-squares estimation (Bradshaw, Duchateau, & Ber-
sini, 1997), Bayesian inference (Bishop & Svensen, 2002), regularized minimum cross-entropy estimation (Lu, 2006), and
stochastic configuration algorithms (Wang & Li, 2017). The use of these alternative paradigms may allow for feasible esti-
mation of MoE models in various settings where ML estimation may not be computationally possible, or may allow for pre-
cise inference to be drawn in situations where ML estimation leads to inaccurate conclusions.
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