
Chapter 7
Unsupervised Bioacoustic Segmentation
by Hierarchical Dirichlet Process Hidden
Markov Model

Vincent Roger, Marius Bartcus, Faicel Chamroukhi, and Hervé Glotin

Abstract Bioacoustics is powerful for monitoring biodiversity. We investigate in
this paper automatic segmentation model for real-world bioacoustic scenes in order
to infer hidden states referred as song units. Nevertheless, the number of these
acoustic units is often unknown, unlike in human speech recognition. Hence, we
propose a bioacoustic segmentation based on the Hierarchical Dirichlet Process
(HDP-HMM), a Bayesian non-parametric (BNP) model to tackle this challenging
problem. Hence, we focus our approach on unsupervised learning from bioacoustic
sequences. It consists in simultaneously finding the structure of hidden song
units, and automatically infers the unknown number of the hidden states. We
investigate two real bioacoustic scenes: whale, and multi-species birds songs. We
learn the models using Markov-Chain Monte Carlo (MCMC) sampling techniques
on Mel Frequency Cepstral Coefficients (MFCC). Our results, scored by bioacoustic
expert, show that the model generates correct song unit segmentation. This study
demonstrates new insights for unsupervised analysis of complex soundscapes and
illustrates their potential of chunking non-human animal signals into structured
units. This can yield to new representations of the calls of a target species, but also
to the structuration of inter-species calls. It gives to experts a tracktable approach
for efficient bioacoustic research as requested in Kershenbaum et al. (Biol Rev
91(1):13–52, 2016).

7.1 Introduction

Acoustic communication is common in the animal world where individuals commu-
nicate with sequences of some different acoustic elements [3]. An accurate analysis
is important in order to give a better identification of some animal species and
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Fig. 7.1 The four acoustic common ways used to divide into units [3]. (a) Separated by silence.
(b) Change in acoustic properties (regardless of silence). (c) Series of sounds. (d) Higher levels of
organisation

interpret the identified song units in time. There is a lack of methodologies focused
on real world data, and with further applications in ecology and wildlife manage-
ment. One of the major bottlenecks for the application of these methodologies is
their inability to work under heavy complex acoustic environment, where different
taxa may sing together or conversely, their extreme sensitivity which may result in
an over classification due to the high degree of variability insight many repertoire
of the vocal species. In this paper, we model the sequence of a non-human signals
and determine their acoustic song units. The way according to which non-human
acoustic sequences can be interpreted can be summarized as shown in Fig. 7.1. Four
common properties are used to define potential criteria for segmenting such signals
into song units. The first way, shown in Fig. 7.1a, consists in separating the signals
using silent gaps. The second way, shown in Fig. 7.1b, consists in separating the
signals according to the changes in the acoustic properties in the signal. The third
way, shown in Fig. 7.1c consists in grouping similar sounds separated with silent
gaps as a single unit. The last common way, shown in Fig. 7.1d consists in separating
signal in organized sound structure, considered as fundamental units.

Manual segmentation is time consuming and not possible for a large acoustic
dataset. That is why automatic approaches are needed. Furthermore, in bioacoustic
signals, the problem of segmenting signals of many species, is still an issue. Hence,
a well-principled learning system based on unsupervised approach can help to
have a better understanding of bioacoustics species. In this context, we investigate
statistical latent data models to automatically identify song units. First, we study
Hidden Markov Models (HMMs) [4].The main issue with HMMs is to select the
number of hidden states. Because of the lack of knowledge on non-human species,
it is hard to have this number. This rises a model selection problem, which can be
addressed by information selection criteria such as BIC, AIC [5, 6], which select an
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HMM with a number of states from pre-estimated HMMs with varying number of
states. Such approaches require learning multiple HMMs. On the other hand, non-
parametric derivations of HMMs constitute a well-principled alternative to address
this issue. Thus we used Bayesian parametric (BNP) formulation for HMMs [7],
also called the infinite HMM (iHMM) [8]. It allows to infer the number of states
(segments, units) from the data. The BNP approach for HMMs relies on Hierarchical
Dirichlet Process (HDP) to define a prior over the states [7]. It is known as the
Hierarchical Dirichlet Process for the Hidden Markov Models (HDP-HMM) [7].
The HDP-HMM parameters can be estimated by MCMC sampling techniques such
as Gibbs sampling. The standard HDP-HMM Gibbs sampling has the limitation of
an inadequate modeling of the temporal persistence of states [9]. This problem has
been addressed by Fox et al. [9] by relying on a sticky extension which allows a more
robust learning. Hence, we have a model to separate non-human signals into states
that represent different activities (song units) and exploring the inference of complex
data such as bioacoustic data in an environmental case (multispecies/multisources)
this problem is not yet resolved.

In this paper, we investigate the BNP formulation of HMM, that is the HDP-
HMM, into two challenges involving real bioacoustic data. First, a challenging
problem of humpback whale song decomposition is investigated. The objective is
the unsupervised structuration of whale bioacoustic data. Humpback whale songs
are long cyclical sequences produced by males during the reproduction season
which follows their migration from high-latitude to low-latitude waters. Singers
from the same geographical region share parts of the same song. This leads to the
idea of dialect [10]. Different hypotheses of these songs were emitted [11–14]. Next,
we investigate a challenging problem of bird song unit structuration. Catchpole and
Slater [15], Kroodsma and Miller [16] show how birds sing and why birds have
such elaborate songs. However, analysing bird song units is difficult due to the
transientness of typical bird chirps, the large behavioural intra-class variability, the
small amount of examples per class, the presence of wildlife noise, and so forth. As
shown later in the obtained segmentation results, such automatic approaches allow
large-scale analysis of environmental bioacoustics recordings

7.1.1 Related Work

Discovering the call units (which can be considered as a kind of non-human
alphabet) of such complex signals can be seen as a problem of unsupervised call
units classification as [1, 17].

Picot et al. [18] also tried to analyse bioacoustic songs using a clustering
approach. They implemented a segmentation algorithm based on Payne’s principle
to extract sound units from a bioacoustic song. Contrary to [17], in which the
number of states (call units in this case) has been fixed by Davies Bouldin criteria,
or [18] where a K-means algorithm is used, our approach is based on a probabilist
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approach on the MFCC1; it is non-parametric that is well-suited to the problem of
automatically inferring the number of the states corresponding to the data. In the
next section we describe the real-world bioacoustic challenges we used and explain
our approach.

7.2 Data and Methods

The data used represent the difficulties of bioacoustic problems, especially when
the only information linked to the signal is the species name. Thus, we have to
determine a sequence without ground truth.

7.2.1 Humpback Whale Data

Humpback whale song data consist of a recording (about 8.6 minutes) produced
at few meters from the whale in La Reunion—Indian Ocean [19],2 at a frequency
sample of 44.1 kHz, 32 bits, one channel.

We extract MFCC features from the signal, with pre-emphasis: 0.95, hamming
window, FFT on 1024 points (nearly 23ms), frameshift 10ms, 24Mel channels,
12 MFCC coefficients plus energy and their delta and acceleration, for a total of
39 dimensions as detailed in the NIPS 2013 challenge [19] where the signal and
the features are available. The retained data for our experiment are the 51,336 first
observations.

7.2.2 Multi-Species Bird Data

Bird species song data from Fernand Deroussen Jerome Sueur of Musee National
d’Histoire Naturelle [20], consists of a training and a testing set (not used here
because it contains multiple species singing simultaneously). Theses sets were
designed for the ICML4B challenge.3

The recordings have a frequency sample of 44.1 kHz, 16 bits, one channel. The
training set is composed of 35 recordings, 30 s each taken from 1 microphone. Each
record contains 1 bird species in the foreground for a total of 35 different birds
species.

1The MFCC are features that represent and compress short-term power spectrum of a sound. It
follows the Mel scale.
2http://sabiod.univ-tln.fr/nips4b/challenge2.html.
3http://sabiod.univ-tln.fr/icml2013/BIRD_SAMPLES/.

http://sabiod.univ-tln.fr/nips4b/challenge2.html
http://sabiod.univ-tln.fr/icml2013/BIRD_SAMPLES/
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The feature extraction for this application is applied as follows. First, a high pass
filter is processed to reduce the noise (set at 1.000 kHz to avoid noises). Then, we
extract the MFCC features with windows of 0.06 s and shift of 0.03 s, we keep 13
coefficients, with energy as first parameter, to be compact and sufficient accurate,
considering only the vocal track information and removing the source information.
Also, we focus on frequencies below 8.000 kHz, because of the alterations into the
spectrum. We obtain 34,965 observations with 13 dimensions each for train set, that
is used to learn our model.

7.2.3 Method: Unsupervised Learning for Signal
Representation

To solve bioacoustic problems and finding the number of call units we propose
to use the HDP-HMM model to model complex bioacoustic data. Our approach
automatically discovers and infers the number of states from the non-human song
data.

In this paper we present two applications on bioacoustic data. We study the song
unit structuration, for the humpback whale and for the multi-species birds signal.

In the next section we give a brief description of the Hidden Markov Model
and it’s Bayesian non-parametric used in our bioacoustic signal representation
applications.

7.3 Bayesian Non-parametric Alternative for Hidden
Markov Model

The finite Hidden Markov Model (HMM) is very popular due to its stability to
model sequential data (e.g. acoustic data). It assumes that the observed sequence
X = (x1, . . . , xT ) is governed by a hidden state sequence z = (z1, . . . , zT ), where
xt ∈ Rd is the multidimensional observation at time t and zt represents the hidden
state of xt values in a finite set {1, . . . , K}, K being the number of states, that is
unknown. The generative process of the HMM can be described in general by the
following steps. First, z1 follows the initial distribution π1. Then, given the previous
state (zt−1), the current state zt follows the transition distribution. Finally, given
the state zt , the observation xt follows the emission distribution F(θzt ) of that
state. The HMM parameters, that are the initial state transition (π1), the transition
matrix (π), and the emission parameters (θ ) are in general estimated in a maximum
likelihood estimation (MLE) framework by using the Expectation-Maximization
(EM) algorithm, also known as the Bauch-Welch algorithm [21] in the context of
HMMs.
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Therefore, for the finite HMM, the number of states K is required to be known
a priori. This model selection issue can be addressed in a two-stage scheme by
using model selection criteria such as the Bayesian Information Criterion (BIC)
[5], the Akaike Information Criterion (AIC) [6], the Integrated Classification
Likelihood criterion (ICL) [22], etc to select a model from pre-estimated HMMs
with varying number of states. Such approaches are limited to learn N HMMs, N
being sufficiently high to have an equivalent of a non parametric approach. In the
light of this, a non parametric approach is more efficient because it theoretically
tends to an infinite number of states. Thus, we use a Bayesian non-parametric (BNP)
version of the HMM, that is able to infer the number of hidden states from the data.
It is more flexible than learning multiple HMMs, because in bio-acoustic problems
the model have to characterize multiple species/individuals, thus it possibly tends to
a large number of hidden states.

The BNP approach for the HMM, that is the infinite HMM (iHMM), is based
on a Dirichlet Process (DP) [23]. However, as the transitions of states have
independent priors, there is no coupling across transitions between different states
[8], therefore the DP is not sufficient to extend the HMM to an infinite model. The
Hierarchical Dirichlet Process (HDP) prior distribution on the transition matrices
over countability infinite state space, derived by Teh et al. [7], extends the HMM to
the infinite state space model and is briefly described in the next subsection.

7.3.1 Hierarchical Dirichlet Process (HDP)

Suppose the data divided into J groups, each produced by a related, yet distinct
process. The HDP extends the DP by an hierarchical Bayesian approach such that a
global Dirichlet Process prior DP(α0,G0) is drawn from a global prior Gj , where
G0 is itself a Dirichlet Process distribution with two parameters, a base distribution
H and a concentration parameter γ . The generative process of the data with the HDP
can be summarized as follows. Suppose data X, with i = 1, . . . , T observations
grouped into j = 1, . . . , J groups. The observations of the group j are given by
Xj = (xj1, xj2, . . .), all observations of group j being exchangeable. Assume each
observation is drawn from a mixture model, thus each observations xj i is associated
with a mixture component, with parameter θj i . Note that from the DP property, we
observe equal values in the components θj i . Now, giving the model parameter θj i ,
the data xj i is drawn from the distribution F(θj i). Assuming a prior distribution
Gj over the model parameters associated for group j , θ j = (θj1, θj2, . . .), we can
define the generative process in Eq. (7.1).

G0|γ ,H ∼ DP(γ ,H),

Gj |α0,G0 ∼ DP(α0,G0), ∀j ∈ 1, . . . , J ,
θj i |Gj ∼ Gj, ∀j ∈ 1, . . . , J and ∀i ∈ 1, . . . , T ,
xj i |θj i ∼ F(xj i |θj i),∀j ∈ 1, . . . , J and ∀i ∈ 1, . . . , T .

(7.1)



7 Unsupervised Bioacoustic Segmentation. . . 119

The Chinese Restaurant Process (CRP) [24] is a representation of the Dirichlet
Process that results from a metaphor related to the existence of a restaurant with
possible infinite tables (clusters) where customers (observations) are sitting in it.
An alternative of such a representation for the Hierarchical Dirichlet Process can
be described by the Chinese Restaurant Franchise (CRF) process by extending the
CRP to multiple restaurants that share a set of dishes.

The idea of CRF is that it gives a representation for the HDP by extending a
set of (J) restaurants, rather than a single restaurant. Suppose a patron of chinese
restaurant creates many restaurants, strongly linked to each other, by a franchise
wide menu, having dishes common to all restaurants. As a result, restaurants are
created (groups) with a possibility to extend each restaurant with an infinite number
of tables (states) at witch the customers (observations) sit. Each customer goes to
his specified restaurant j , where each table of this restaurant has a dish between the
customers that sit at that specific table. However, multiple tables of different existing
restaurants can serve the same dish.

7.3.2 The Hierarchical Dirichlet Process for the Hidden
Markov Model (HDP-HMM)

The HDP-HMM uses a HDP prior distribution providing a potential countability
infinite number of hidden states and tackles the challenging problem of model
selection for the HMM. This model is a Bayesian non-parametric extension for the
HMM also presented as the infinite HMM. To derive the HDP-HMM model we
suppose a doubly-infinite transition matrix, where each row corresponds to a CRP.
Thus, in a HDP formalism, the groups correspond to states, with CRP distribution
on next states. CRF links these states distributions.

We assume for simplicity a distinguished initial state z0. Let Gj describes both,
the transition matrix πk and the emission parameters θk , the infinite HMM can be
described by the following generative process:

β|γ ∼ GEM(γ ),

πk|α,β ∼ DP(α,β),

zt |zt−1 ∼ Mult(πzt−1),

θk|H ∼ H,

xt |zt , {θk}∞k=1 ∼ F(θzt ).

(7.2)

where,

β is a hyperparameter for the DP [2] distributed according to the stick-breaking
construction noted GEM(.);

zt is the indicator variable of the HDP-HMM that follows a multinomial distribution
Mult(.);
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the emission parameters θk , are drawn independently, according to a conjugate prior
distribution H ;

F(θzt ) is a data likelihood density with the unique parameter space of θzt equal to
θk .

Suppose the observed data likelihood is a Gaussian density N (xt ; θk) where
the emission parameters θk = {µk,Σk} are respectively the mean vector µk and
the covariance matrix Σk . According to [25], the prior over the mean vector and
the covariance matrix is a conjugate Normal-Inverse-Wishart distribution, denoted
as N IW (µ0, κ0, ν0,Λ0), with the hyper-parameters describing the shapes and
the position for each mixture components: µ0 is the mean of Gaussian should be,
κ0 the number of pseudo-observations supposed to be attributed, and ν0,Λ0 being
similarly for the covariance matrix.

In the generative process given in Eq. (7.2), π is interpreted as a double-infinite
transition matrix with each row taking a CRP. Thus, in the HDP formulation the
group-specific distribution, πk corresponds to the state-specific transition where
the CRF defines distributions over the next state. In turn, [9] showed that HDP-
HMM inadequately models the temporal persistence of states, creating redundant
and rapidly switching states and proposed an additional hyperparameter κ that
increase the self-transition probabilities. This is named as sticky HDP-HMM. The
distribution on the transition matrix of Eq. (7.2) for the sticky HDP-HMM is given
as follows:

πk|α,β ∼ DP
(

α + κ,
αβ + κδk

α + κ

)
, (7.3)

where a small positive κ > 0 is added to the kth component of αβ, thus of self-
transition probability is increased by κ . Note that setting κ to 0, the original HDP-
HMM is recovered. Under such assumption for the transition matrix, [9] proposes
an extension of the CRF to the Chinese Restaurant Franchise with Loyal Customers.
A graphical representation of (sticky) HDP-HMM is given in Fig. 7.2.

Fig. 7.2 Graphical
representation of sticky
Hierarchical Dirichlet Process
for Hidden Markov Model
(HDP-HMM)
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The inference of the infinite HMM (the (sticky) HDP-HMM) with the Block
Gibbs sampler algorithm is given in Algorithm 3 of Supplementary Material in
[9] paper. The basic idea of this sampler is to estimate the posterior distributions
over all the parameters from the generative process of (sticky) HDP-HMM given in
Eq. (7.2). Here, the CRF with loyal customers, hyperparameter κ of the transition
matrix can be sampled in order to increase the self-transition probability.

Hence, the HDP-HMM model resolves the problem of advanced signal decom-
position using acoustic features with respect to time. It allows identifying song
units (states), behaviour and enhancing populations studies. From the other point,
modelling data with the HDP-HMM offers a great alternative of the standard HMM
to tackle the challenging problem of selecting the number of states, identifying
the unknown number of hidden units from the used features (here: MFCC). The
experimental results show the interest of such an approach.

7.4 Experiments

In this section we present two applications on bioacoustic data. We study the
song unit structuration, for the humpback whale signal and for multi-species birds
signals.

7.4.1 Humpback Whale Sound Segmentation

The learning of the humpback whale song, applied via the HDP-HMM, is done with
the Blocked Gibbs sampling. A number of iterations was fixed to Ns = 30,000 and
a truncation level, that corresponds to the maximum number of possible states in
the model (being sufficient big to approximate it to an infinite model), is fixed to
Lk = 30. The number of states estimated by the HDP-HMM Gibbs sampling is six.

Figure 7.3 shows the state sequences partition, for all 8.6min of humpback
whale song data, obtained by the HDP-HMM Gibbs sampling. For more detailed
information, the result of the whole humpback whale signal segmentation is
separated by several parts of 15 s. All the spectrograms of the humpback whale
song and the obtained segmentation are made available in the demo: http://sabiod.
univ-tln.fr/workspace/MTAP/whale.zip. This demo highlights the interest of using a
BNP formulation of HMMs for unsupervised segmentation of whale signals. Three
examples of the humpback whale song, with 15 s duration each, are presented and
discussed in this paper (see Fig. 7.5).

Figure 7.5 represents the spectrogram and the corresponding state sequence
partition obtained by the HDP-HMM Gibbs inference algorithm. They respectively
represent examples of the beginning, the middle and the end of the whole signal.

http://sabiod.univ-tln.fr/workspace/MTAP/whale.zip
http://sabiod.univ-tln.fr/workspace/MTAP/whale.zip
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Fig. 7.3 State sequence for 8.6min of humpback whale song obtained by the Blocked Gibbs
sampling inference approach for HDP-HMM
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Fig. 7.4 Spectrograms of the 6th whale song unit (left) and 2nd song unit (right)

All the obtained state sequence partitions fit the spectral patterns. We note that
the estimated state 1 fits the sea noise, state 5 also fits sea noise, but it is right
before units associated to whale songs. The presence of this unit can be due to an
insufficient number of Gibbs samples. For a longer learning the fifth state could be
merged with the first state. State 2 fits the up and down sweeps. State 3 fits low
and high fundamental harmonic sounds, state 4 fits for numerous harmonics sound
and state 6 fits very noisy and broad sounds. Figure 7.4 shows two spectrograms
extracted from the 6th song unit (left) and from the 2nd song unit (right) of the
whole humpback whale signal. We can see that the units fit specific patterns on the
whole signal.

Pr. Gianni Pavan (Pavia University, Italy), undersea NATO bioacoustic expert
analysed the results on these humpback whale song segmentations we produced
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Fig. 7.5 Obtained song units starting at 60 s (left), 255 s (middle) and 495 s (right). The spectro-
gram of the whale song (top), and the obtained state sequence (bottom) by the Blocked Gibbs
sampler inference approach for the HDP-HMM. The silence (unit 1 and 5) looks well separated
from the whale signal. Whale up and down sweeps (unit 2), harmonics (unit 3 and 4) and broad
sounds (unit 6) are also present
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in this paper. He validated the computed representation, as the usual optimal
segmentation an expert produces. This highlight the interest of learning BNP model
on a single species to produce expert representation. In the next section we validate
the approach on several bird species.

7.4.2 Birds Sound Segmentation

In this section we describe the obtained bird song unit segmentation. We segment
the bird signals into song units by learning the HDP-HMM model on the training
set (containing 35 different species). The main goal is to see if a such approach can
model multiple species. Note that in this set, we assume there is no multiple species
singing at the same time.

For this application, we considered 14,5000 Gibbs iterations and a truncation
level of 200 for the maximum number of states. We suppose them to be sufficiently
big for this data problem. Moreover, we use one mixture component per state, that
appeared to give satisfactory results and we use a sticky HDP-HMMwith the hyper-
parameter κ set to 0.1.

We discovered 76 song units with this method. For more detailed information
over the signal, we separated the whole train set into parts of 15 s each. All the
spectrograms and the associated segmentation obtained are made available in the
demo: http://sabiod.univ-tln.fr/workspace/MTAP/bird.zip.

7.4.2.1 Evaluation of the Bird Result

To evaluate the bird results, we used a ground truth produced by an expert
ornithologist. He segmented each recording of the dataset according to the different
patterns on the signal. Then we compare this ground truth with the segments
produced by the model using the Normalized Mutual Information NMI [26] which
calculates shared information between two clustering sets. We computed the NMI
score for each species, as reported in Table 7.1. The highest score is 0.680 (Corvus
Corone) and the lowest score is 0.003 (Garrulus Glandarius). Thus, for some
species, the model has difficulties to segment the data. Sometimes, it uses less states
than the expert to segment the data: for the Oriolus Oriolus (Golden Oriole), the
model identifies 12 song units versus 50 identified by the expert. Nevertheless, the
model also uses more states than the expert to segment the data: for the Fringilla
Coelebs (chaffinch), the model identifies 15 song units versus 3 identified by the
expert. In other cases, the model can’t differentiate 2 distinct vocalizes if they have
close frequencies (Phylloscopus Collybita and Columba Palumbus), background
and foreground species (Streptopelia Decaocto). This can be due to the feature used
(wrong time scale), or to an insufficient number of iterations of the Gibbs sampling.
For most of species, the model and the ground truth have similar patterns observable
on Figs. 7.6, 7.8 and 7.7, but not in the sample Figs. 7.10 and 7.9.

http://sabiod.univ-tln.fr/workspace/MTAP/bird.zip
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Table 7.1 NMI score for the
obtained segmentation using
HDP-HMM

Species NMI score

Corvus corone 0.680
Picus viridis 0.602
Fringilla coelebs 0.565
Emberiza citrinella 0.534
Parus palustris 0.521
Luscinia megarhynchos 0.497
Dendrocopos major 0.481
Prunella modularis 0.476
Sturnus vulgaris 0.467
Pavo cristatus 0.437
Certhia brachydactyla 0.417
Turdus viscivorus 0.417
Parus caeruleus 0.413
Troglodytes troglodytes 0.407
Sylvia atricapilla 0.405
Turdus philomelos 0.398
Turdus merula 0.395
Erithacus rubecula 0.394
Carduelis chloris 0.385
Columba palumbus 0.352
Branta canadensis 0.339
Anthus trivialis 0.332
Sitta europaea 0.332
Oriolus oriolus 0.316
Streptopelia decaocto 0.306
Phoenicurus phoenicurus 0.291
Phasianus colchicus 0.272
Parus major 0.270
Phylloscopus collybita 0.267
Cuculus canorus 0.205
Aegithalos caudatus 0.202
Strix aluco 0.200
Alauda arvensis 0.169
Motacilla alba 0.105
Garrulus glandarius 0.003
Mean 0.367
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Fig. 7.6 Picus viridis with a high NMI score of 0.602. Top: the labelled ground truth over 30 s
where label 0 is always the silence label and the other labels are specific to each species. Medium:
our model with the 76 classes. Bottom: spectrogram

Fig. 7.7 Corvus corone, high NMI score of 0.68 (cf. Fig. 7.6)
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Fig. 7.8 Fringilla coelebs, medium NMI score 0.565 (cf. Fig. 7.6)

Fig. 7.9 Motacilla alba, low NMI score 0.105 (cf. Fig. 7.6)
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Fig. 7.10 Garrulus glandarius, low NMI score 0.003 (cf. Fig. 7.6)

To improve the model, we can investigate better feature representation for species
with different acoustic characteristics. We can also improve noise reduction which
could be useful for background activities. Also, it can be dur to the fact we use
one annotator. Nevertheless, the application highlights the interest of using BNP
formulation of HMMs for unsupervised segmentation of bird signals.

7.5 Conclusions

We proposed BNP HMM formulation to a representation of real world bioacoustic
scenes. The evaluations on two challenges, available online, show the efficiency of
the method, which forms a possible answer to the questions opened in [3]. The BNP
formulation gives an estimate number of cluster needed to segment the signal and
our experiments highlight the interest of such formulation on bioacoustic problems.
We score with NMI the segmentation obtained for birds with the segmentation from
an expert, showing promising results.One of the main topic in ecological acoustics
is the development of unsupervised methods for automatic detection of vocalized
species, which would help specialists in ecological works during their monitoring
activities.Future work will consist in the MCMC sampling dealing with larger data
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problems, like variational inference [27] or stochastic variational inference used for
HMMs [28], joint to feature learning to automatically adapt time frequency scales
to each species.
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