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a b s t r a c t 

Mixture of experts (MoE) is a popular framework in the fields of statistics and machine learning for 

modeling heterogeneity in data for regression, classification and clustering. MoE for continuous data are 

usually based on the normal distribution. However, it is known that for data with asymmetric behavior, 

heavy tails and atypical observations, the use of the normal distribution is unsuitable. We introduce a 

new robust non-normal mixture of experts modeling using the skew t distribution. The proposed skew t 

mixture of experts, named STMoE, handles these issues of the normal mixtures experts regarding possi- 

bly skewed, heavy-tailed and noisy data. We develop a dedicated expectation conditional maximization 

(ECM) algorithm to estimate the model parameters by monotonically maximizing the observed data log- 

likelihood. We describe how the presented model can be used in prediction and in model-based cluster- 

ing of regression data. Numerical experiments carried out on simulated data show the effectiveness and 

the robustness of the proposed model in fitting non-linear regression functions as well as in model-based 

clustering. Then, the proposed model is applied to the real-world data of tone perception for musical data 

analysis, and the one of temperature anomalies for the analysis of climate change data. The obtained re- 

sults confirm the usefulness of the model for practical data analysis applications. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Mixture of experts (MoE) [31] is a popular framework in the

statistics and machine learning fields for modeling heterogeneity

in data for regression, classification and clustering. They consist in

a fully conditional mixture model where both the mixing propor-

tions, known as the gating functions, and the component densities,

known as the experts, are conditional on some input covariates.

MoE have been investigated, in their simple form, as well as in

their hierarchical form [34] (e.g., Section 5.12 of [44] ) for regression

and model-based cluster and discriminant analyses and in differ-

ent application domains. MoE Have also been investigated for rank

data [20] and network data [21] with social science applications.

A survey on the topic can be found in [22] . A complete review of

the MoE models can be found in [65] . MoE for continuous data are

usually based on the normal distribution. Along this paper, we will

call the MoE using the normal distribution the normal mixture of

experts, abbreviated as NMoE. However, it is well-known that the

normal distribution is sensitive to outliers. Moreover, for a set of

data containing a group or groups of observations with heavy tails

or asymmetric behavior, the use of normal experts may be unsuit-

able and can unduly affect the fit of the MoE model. In this paper,
E-mail addresses: faicel.chamroukhi@unicaen.fr , faicel.chamroukhi@gmail.com 
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e attempt to overcome these limitations in MoE by proposing a

ore adapted and robust mixture of experts model that can deal

ith possibly skewed, heavy-tailed data and with outliers. 

Recently, the problem of sensitivity of NMoE to outliers have

een considered by [48] where the authors proposed a Laplace

ixture of linear experts (LMoLE) for a robust modeling of

on-linear regression data. The model parameters are estimated

y maximizing the observed-data likelihood via a minorization-

aximization (MM) algorithm. Here, we propose an alternative

oE model, by relaying on other non-normal distribution that

eneralizes the normal distribution, that is, the skew- t distribu-

ion introduced quite recently by [4] . We call the proposed MoE

odel the skew- t mixture of experts (STMoE). One may use the

 distribution, as in the t mixture of experts (TMoE) proposed by

9,10] which provides a natural robust extension of the normal dis-

ribution to model data with more heavy tails and to deal with

ossible outliers. The robustness of the t distribution may however

e not sufficient in the presence of asymmetric observations. In

ixture modeling, to deal with this issue regarding skewed data,

41] proposed the univariate skew- t mixture model that allows for

ccommodation of both skewness and thick tails in the data, by

elying on the skew- t distribution [4] . For the general multivari-

te case using skew- t mixtures, one can refer to [36–38,40,51] , and

ecently, the unifying framework for previous restricted and un-

estricted skew- t mixtures, using the CFUST distribution [39] . We

http://dx.doi.org/10.1016/j.neucom.2017.05.044
http://www.ScienceDirect.com
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ote that the STMoE model presented in this paper is more gen-

ral and more robust compared to the TMoE model presented in

hamroukhi-TMoE. As discussed in Section 3.2 , the TMoE model

an be seen as a particular case of the STMoE model when the

kewness parameter goes to zero. The presented model is then

ore robust as it is able to accommodate more complex data dis-

ribution where the data or a group of data are skewed and af-

ected by atypical observations. The TMoE model may fail in this

ontext. 

The inference in the previously described approaches

s performed by maximum likelihood estimation via the

xpectation-maximization (EM) algorithm or its extensions [15,43] ,

n particular the expectation conditional maximization (ECM)

lgorithm [46] . [18] have also considered the Bayesian inference

ramework for namely the skew- t mixtures. 

For the regression context, the robust modeling of regression

ata has been studied namely by [5,29,63] who considered a mix-

ure of linear regressions using the t distribution. In the same con-

ext of regression, [58] proposed the mixture of Laplace regres-

ions, which has been then extended by [48] to the case of mixture

f experts, by introducing the Laplace mixture of linear experts

LMoLE). Recently, [66] introduced the scale mixtures of skew-

ormal distributions for robust mixture regressions. However, un-

ike our proposed STMoE model, the regression mixture models

f [5,29,58,63,66] do not consider conditional mixing proportions,

hat is, mixing proportions depending on some input variables, as

n the case of mixture of experts, which we investigate here. In

ddition, the approaches of [5,29,58,63] do not consider both the

roblem of robustness to outliers together with the one of dealing

ith possibly asymmetric data. 

Here we consider the mixture of experts framework for non-

inear regression problems and model-based clustering of regres-

ion data, and we attempt to overcome the limitations of the

MoE model for dealing with asymmetric, heavy-tailed data and

hich may contain outliers. We investigate the use of the skew

 distribution for the experts, rather than the commonly used

ormal distribution. We propose the skew- t mixture of experts

STMoE) model that allows for accommodation of both skewness

nd heavy tails in the data and which is robust to outliers. This

odel corresponds to an extension of the unconditional skew t

ixture model [41] , to the mixture of experts (MoE) framework,

here the mixture means are regression functions and the mixing

roportions are also covariate-varying. 

For the model inference, we develop a dedicated expectation

onditional maximization (ECM) algorithm to estimate the model

arameters by monotonically maximizing the observed data log-

ikelihood. The expectation-maximization algorithm and its exten-

ions [15,43] are indeed very popular and successful estimation

lgorithms for mixture models in general and for mixture of ex-

erts in particular. Moreover, the EM algorithm for MoE has been

hown by [47] to be monotonically maximizing the MoE likelihood.

he authors have showed that the EM (with Iteratively Reweighted

east Squares (IRLS) in this case) algorithm has stable conver-

ence and the log-likelihood is monotonically increasing when a

earning rate smaller than one is adopted for the IRLS procedure

ithin the M-step of the EM algorithm. They have further pro-

osed an expectation conditional maximization (ECM) algorithm

o train MoE, which also has desirable numerical properties. The

oE has also been considered in the Bayesian framework, for ex-

mple one can cite the Bayesian MoE [61,62] and the Bayesian hi-

rarchical MoE [7] . Related MoE considering the asymmetric t dis-

ribution in a Bayesian framework is proposed by [67] . Beyond the

ayesian parametric framework, the MoE models have also been

nvestigated within the Bayesian non-parametric framework. We

ite for example the Bayesian non-parametric MoE model [54] and

he Bayesian non-parametric hierarchical MoE approach of [30] us-
ng Gaussian Processes experts for regression. For further mod-

ls on mixture of experts for regression, the reader can be re-

erred to for example the book of [57] . In this paper, we investigate

emi-parametric models under the maximum likelihood estimation

ramework. 

The remainder of this paper is organized as follows. In

ection 2 we briefly recall the normal MoE framework. In Sec-

ion Then, in Section 3 , we present the STMoE model and in

ection 4 the parameter estimation technique using the ECM algo-

ithm. We then investigate in Section 5 the use of the proposed

odel for non-linear regression and for prediction. We also show

n Section 6 how the model can be used in a model-based clus-

ering prospective. In Section 7 , we discuss the model selection.

ection 8 is dedicated to the experimental study to assess the pro-

osed model. Finally, in Section 9 , conclusions are drawn and we

pen a future work. 

. Mixture of experts for continuous data 

Mixtures of experts [31,34] are used in a variety of contexts in-

luding regression, classification and clustering. Here, we consider

he MoE framework for fitting (non-linear) regression functions

nd clustering of univariate continuous data . The aim of regres-

ion is to explore the relationship of an observed random variable

 given a covariate vector X ∈ R 

p via conditional density functions

or Y | X = x of the form f ( y | x ), rather than only exploring the un-

onditional distribution of Y . Thanks to their great flexibility, mix-

ure models [44] has took much attention for non-linear regression

roblems and we distinguish in particular the classical mixture of

egressions model [16,19,27,33,52,53,59,60] and mixture of experts

or regression analysis [31,34,64] . The univariate mixture of regres-

ions model assumes that the observed pairs of data ( x , y ) where

 ∈ R is the response for some covariate x ∈ R 

p , are generated from

 regression functions and are governed by a hidden categorical

andom variable Z indicating from which component each observa-

ion is generated. Thus, the mixture of regressions model decom-

oses the nonlinear regression model density f ( y | x ) into a convex

eighted sum of K regression component models f k ( y | x ) and can

e defined as follows: 

f (y | x ;Ψ ) = 

K ∑ 

k =1 

πk f k 
(
y | x ;Ψ k 

)
(1) 

here the π k ’s defined by πk = P (Z = k ) and represent the non-

egative mixing proportions that sum to 1. The model parameter

ector is given by Ψ = (π1 , . . . , πK−1 , Ψ
T 
1 , . . . , Ψ

T 
K ) 

T , Ψ k being the

arameter vector of the k th component density. 

.1. The mixture of experts (MoE) model 

Although similar, the mixture of experts [31] differ from regres-

ion mixture models in many aspects. One of the main differences

s that the MoE model consists in a fully conditional mixture while

n the regression mixture, only the component densities are condi-

ional. Indeed, the mixing proportions are constant for the regres-

ion mixture, while in the MoE, they are modeled as a function

f the inputs, generally modeled by logistic or a softmax func-

ion. Mixture of experts (MoE) for regression analysis [31,34] ex-

end the model (1) by modeling the mixing proportions as func-

ion of some covariates r ∈ R 

q . The mixing proportions, known as

he gating functions in the context of MoE, are modeled by the

ultinomial logistic model and are defined by: 

k ( r ;α) = P (Z = k | r ;α) = 

exp ( αT 
k 

r ) ∑ K 
� =1 exp ( αT 

� r ) 
(2) 

here r ∈ R 

q is a covariate vector, αk is the q -dimensional coeffi-

ients vector associated with r and α = ( αT 
1 
, . . . , αT 

K−1 
) T is the pa-
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rameter vector of the logistic model, with αK being the null vec-

tor. Thus, the MoE model consists in a fully conditional mixture

model where both the mixing proportions (the gating functions)

and the component densities (the experts) are conditional on pre-

dictors (respectively r and x ). 

2.2. The normal mixture of experts (NMoE) model and maximum 

likelihood estimation 

In the case of mixture of experts for regression, it is usually as-

sumed that the experts are normal, that is, follow a normal distri-

bution. A K -component normal mixture of experts (NMoE) ( K > 1)

has the following formulation: 

f (y | r , x ;Ψ ) = 

K ∑ 

k =1 

πk ( r ;α) N 

(
y ;μ( x ;βk ) , σ

2 
k 

)
(3)

which involves, in the semi-parametric case, component means de-

fined as parametric (non-)linear regression functions μ( x ; βk ). 

The NMoE model parameters are estimated by maximizing

the observed data log-likelihood by using the EM algorithm

[15,31,34,35,43,47] . Suppose we observe an i.i.d sample of n in-

dividuals (y 1 , . . . , y n ) with their respective associated covariates

( x 1 , . . . , x n ) and ( r 1 , . . . , x r ) . Then, under the NMoE model, the ob-

served data log-likelihood for the parameter vector Ψ is given by:

log L ( Ψ ) = 

n ∑ 

i =1 

log 

K ∑ 

k =1 

πk ( r i ;α) N 

(
y i ;μ( x ;βk ) , σ

2 
k 

)
. (4)

The E-Step at the m th iteration of the EM algorithm for the NMoE

model requires the calculation of the following posterior probabil-

ity that the individual ( y i , x i , r i ) belongs to expert k , given a pa-

rameter estimation Ψ (m ) 
: 

τ (m ) 
ik 

= P (Z i = k | y i , x i , r i ;Ψ (m ) 
) 

= 

πk ( r ;α(m ) ) N 

(
y i ;μk ( x i ;β(m ) 

k 
) , σ 2 

k 

(m ) 
)

f (y i | r i , x i ;Ψ (m ) 
) 

. (5)

Then, the M-step calculates the parameter update Ψ (m +1) 
by max-

imizing the well-known Q -function (the expected complete-data

log-likelihood), that is: 

Ψ (m +1) = arg max 
Ψ∈ �

Q( Ψ ;Ψ (m ) 
) (6)

where � is the parameter space. For example, in the case of nor-

mal mixture of linear experts (NMoLE) where each expert’s mean

has the flowing linear form: 

μ( x ;βk ) = β
T 
k x , (7)

where βk ∈ R 

p is the vector of regression coefficients of compo-

nent k , the updates for each of the expert component parameters

consist in analytically solving a weighted Gaussian linear regres-

sion problem and are given by: 

β
(m +1) 
k = 

[ n ∑ 

i =1 

τ (m ) 
ik 

x i x 
T 
i 

] −1 n ∑ 

i =1 

τ (q ) 
ik 

y i x i , (8)

σ 2 
k 

(m +1) = 

∑ n 
i =1 τ

(m ) 
ik 

(
y i − β

T 
k 

(m +1) 
x i 

)2 

∑ n 
i =1 τ

(m ) 
ik 

· (9)

For the mixing proportions, the parameter update α(m +1) cannot

however be obtained in a closed form. It is calculated by IRLS

[11,13,23,31,34] . 
However, the normal distribution is not adapted to deal with

symmetric and heavy tailed data. It is also known that the nor-

al distribution is sensitive to outliers. In the proposal, we ad-

ress these issues regarding the skewness, heavy tails and atypical

bservations in the data, by proposing a robust MoE modeling by

sing the skew- t distribution, recently introduced by [4] , for the

xpert components rather than the usually used normal one. The

roposed skew t mixture of experts (STMoE) allows for simultane-

usly accommodating asymmetry and heavy tails in the data and

s also robust to outliers. 

. The skew t mixture of experts (STMoE) model 

The proposed skew t mixture of experts (STMoE) model is

 MoE model in which the expert components have a skew- t

ensity, rather than the standard normal one as in the NMoE

odel. The skew- t distribution [4] , which is a robust generaliza-

ion the skew-normal distribution [2,3] , as well as its stochas-

ic and hierarchical representations, which will be used to de-

ne the proposed STMoE model, are recalled in the following

ection. 

.1. The skew t distribution 

Let us denote by t ν (.) and T ν (.) respectively the pdf and cdf of

he standard t distribution with degrees of freedom ν . The skew t

istribution, introduced by [4] , can be characterized as follows. Let

 be an univariate random variable with a standard skew-normal

istribution U ∼ SN(0, 1, λ) (which can be shortened as U ∼ SN( λ))

ith pdf given by (A.1) . The skew-normal distribution is recalled

n Appendix A . Then, let W be an univariate random variable in-

ependent of U and following the Gamma distribution, that is,

 ∼ Gamma ( ν2 , 
ν
2 ) . A random variable Y having the following rep-

esentation: 

 = μ + σ
U √ 

W 

(10)

ollows the skew t distribution ST( μ, σ 2 , λ, ν) with location pa-

ameter μ, scale parameter σ , skewness parameter λ and degrees

f freedom ν , whose density is defined by: 

f (y ;μ, σ 2 , λ, ν) = 

2 

σ
t ν (d y ) T ν+1 

(
λ d y 

√ 

ν + 1 

ν + d 2 y 

)
(11)

here d y = 

y −μ
σ . From the hierarchical distribution of the skew-

ormal (A.3) , a further hierarchical representation of the stochas-

ic representation (10) of the skew t distribution is given

y: 

 i | u i , w i ∼ N 

(
μ + δ| u i | , 1 − δ2 

w i 

σ 2 

)
, 

U i | w i ∼ N 

(
0 , 

σ 2 

w i 

)
, (12)

W i ∼ Gamma 

(
ν

2 

, 
ν

2 

)
. 

.2. The skew t mixture of experts (STMoE) model 

The skew proposed t mixture of experts (STMoE) model ex-

ends the skew t mixture model, which was first introduced by

41] , to the MoE framework. In the skew- t mixture model of [41] ,

he mixing proportions and the components means are constant,

hat is, they are not predictor-depending. In the proposed STMoE,

owever, we consider skew- t expert components in which both

he mixing proportions and the mixture component means are
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redictor-depending. More specifically, we use polynomial regres-

ors for the components, as well as multinomial logistic regressors

or the mixing proportions. A K -component mixture of skew t ex-

erts (STMoE) is therefore defined by: 

f (y | r , x ;Ψ ) = 

K ∑ 

k =1 

πk ( r ;α) ST 

(
y ;μ( x ;βk ) , σ

2 
k , λk , νk 

)
· (13) 

he parameter vector of the STMoE model is Ψ = ( αT 
1 , . . . ,

T 
K−1 

, Ψ T 
1 , . . . , Ψ

T 
K ) 

T where Ψ k = ( β
T 
k , σ

2 
k 
, λk , νk ) 

T is the parameter

ector for the k th skew t expert component whose density is de-

ned by 

f 
(
y | x ;μ( x ;βk ) , σ

2 , λ, ν
)

= 

2 

σ
t ν (d y ( x )) T ν+1 

(
λ d y ( x ) 

√ 

ν + 1 

ν + d 2 y ( x ) 

)
(14) 

here d y ( x ) = 

y −μ( x ;βk ) 
σ ·

It can be seen that, when the robustness parameter νk → ∞ for

ach k , the STMoE model (13) reduces to a skew-normal mixture of

xperts model (SNMoE) (see [9] ). On the other hand, if the skew-

ess parameter λk = 0 for each k , the STMoE model reduces to

he t mixture of experts model (TMoE) (e.g., see [9,10] ). Moreover,

hen νk → ∞ and λk = 0 for each k , the STMoE approaches the

tandard NMoE model (3) . This therefore makes the STMoE very

exible as it generalizes the previously described MoE models to

ccommodate situations with asymmetry, heavy tails, and outliers.

.3. Hierarchical representation of the STMoE model 

By introducing the binary latent component-indicators Z ik such

hat Z ik = 1 iff Z i = k, Z i being the hidden class label of the i th

bservation, a hierarchical model for the STMoE model can be

erived as follows. From the hierarchical representation (12) of

he skew t distribution, a hierarchical model for the proposed

TMoE model (13) can be derived from its stochastic representa-

ion (B.2) given in Appendix B , and is as follows: 

 i | u i , w i , Z ik = 1 , x i ∼ N 

(
μ( x i ;βk ) + δk | u i | , 1 − δ2 

k 

w i 

σ 2 
k 

)
, 

U i | w i , Z ik = 1 ∼ N 

(
0 , 

σ 2 
k 

w i 

)
, (15) 

W i | Z ik = 1 ∼ Gamma 

(
νk 

2 

, 
νk 

2 

)
Z i | r i ∼ Mult 

(
1 ;π1 ( r i ;α) , . . . , πK ( r i ;α) 

)
. 

he variables U i and W i are treated as hidden in this hierarchical

epresentation, which facilitates the inference scheme and will be

sed to derive the maximum likelihood estimation of the STMoE

odel parameters Ψ by using the ECM algorithm. 

.4. Identifiability of the STMoE model 

[32] have established that ordered, initialized, and irreducible

oEs are identifiable. Ordered implies that there exist a cer-

ain ordering relationship on the experts parameters Ψ k such

hat ( αT 
1 
, Ψ T 

1 ) 
T ≺ . . . ≺ ( αT 

K 
, Ψ T 

K ) 
T ; initialized implies that w K , the

arameter vector of the K th logistic proportion, is the null

ector, and irreducible implies that Ψ k � = Ψ k ′ for any k � = k ′ .
or the proposed STMoE, ordered implies that there exist a

ertain ordering relationship such that ( β
T 
1 , σ

2 
1 
, λ1 , ν1 ) 

T ≺ . . . ≺
( β

T 
K , σ

2 
K 
, λK , νK ) 

T ; initialized implies that w K is the null vec-

or, as assumed in the model, and finally, irreducible im-

lies that if k � = k ′ , then one of the following conditions holds:
k � = βk ′ , σ k � = σ k ′ , λk � = λk ′ or νk � = νk ′ . Then, we can estab-

ish the identifiability of ordered and initialized irreducible

TMoE models by applying Lemma 2 of [32] , which requires

he validation of the following nondegeneracy condition. The

et { ST (y ;μ( x ;β1 ) , σ
2 
1 
, λ1 , ν1 ) , . . . , ST (y ;μ( x ;β4 K ) , σ

2 
4 K 

, λ4 K , ν4 K ) }
ontains 4 K linearly independent functions of y , for any 4 K dis-

inct quadruplet (μ( x ;βk ) , σ
2 
k 
, λk , νk ) for k = 1 , . . . , 4 K. Thus, via

emma 2 of [32] we have any ordered and initialized irreducible

TMoE is identifiable. 

. Maximum likelihood estimation of the STMoE model 

The unknown parameter vector Ψ of the STMoE model is es-

imated by maximizing the following observed-data log-likelihood

iven an observed i.i.d sample of n observations, that is, the re-

ponses (y 1 , . . . , y n ) and the corresponding predictors ( x 1 , . . . , x n )

nd ( r 1 , . . . , r n ) : 

og L ( Ψ ) = 

n ∑ 

i =1 

log 

K ∑ 

k =1 

πk ( r i ;α) ST 

(
y ;μ( x i ;βk ) , σ

2 
k , λk , νk 

)
· (16)

e perform this iteratively by a dedicated ECM algorithm. The

omplete data consist of the observations as well as the latent vari-

bles (u 1 , . . . , u n ) and (w 1 , . . . , w n ) , and the latent component la-

els (z 1 , . . . , z n ) . Then, from the hierarchical representation of the

TMoE (15) , the complete-data log-likelihood of Ψ is given by: 

og L c ( Ψ ) = 

n ∑ 

i =1 

K ∑ 

k =1 

Z ik 
[

log ( P ( Z i = k | r i ) ) + log ( f ( w i | Z ik = 1 ) ) + 

log ( f ( u i | w i , Z ik = 1 ) ) + log ( f ( y i | u i , Z ik = 1 , x i ) ) 
]

= log L 1 c ( α) + 

K ∑ 

k =1 

[
log L 2 c ( θk ) + log L 3 c (νk ) 

]
(17) 

here θk = ( β
T 
k , σ

2 
k 
, λk ) 

T and 

log L 1 c ( α) = 

n ∑ 

i =1 

K ∑ 

k =1 

Z ik log πk ( r i ;α) , 

og L 2 c ( θk ) = 

n ∑ 

i =1 

Z ik 

[ 
− log (2 π) − log (σ 2 

k ) −
1 

2 

log (1 − δ2 
k ) 

− w i d 2 
ik 

2(1 − δ2 
k 
) 

+ 

w i u i δk d ik 

(1 − δ2 
k 
) σk 

− w i u 

2 
i 

2(1 − δ2 
k 
) σ 2 

k 

] 
, 

og L 3 c (νk ) = 

n ∑ 

i =1 

Z ik 

[ 
− log 


(
νk 

2 

)
+ 

(
νk 

2 

)
log 

(
νk 

2 

)
+ 

(
νk 

2 

)
log (w i ) −

(
νk 

2 

)
w i 

] 
. 

.1. The ECM algorithm for the STMoE model 

The ECM algorithm for the STMoE model starts with an ini-

ial parameter vector Ψ (0) 
and alternates between the E- and CM- 

teps until convergence. 

.2. E-Step 

The E-Step of the CEM algorithm for the STMoE calculates the

 -function, that is the conditional expectation of the complete-

ata log-likelihood (17) , given the observed data { y i , x i , r i } n i =1 
and a

urrent parameter estimation Ψ (m ) 
, m being the current iteration.

rom (17) , the Q -function is given by: 
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Q( Ψ ;Ψ (m ) 
) = Q 1 ( α;Ψ (m ) 

) + 

K ∑ 

k =1 

[ 
Q 2 ( θk , Ψ

(m ) 
) + Q 3 (νk , Ψ

(m ) 
) 
] 
, 

(18)

where 

Q 1 ( α;Ψ (m ) 
) = 

n ∑ 

i =1 

K ∑ 

k =1 

τ (m ) 
ik 

log πk ( r i ;α) , 

Q 2 ( θk ;Ψ (m ) 
) = 

n ∑ 

i =1 

τ (m ) 
ik 

[
− log (2 π) − log (σ 2 

k ) −
1 

2 

log (1 − δ2 
k ) 

− w 

(m ) 
ik 

d 2 
ik 

2(1 − δ2 
k 
) 

+ 

δk d ik e (m ) 
1 ,ik 

(1 − δ2 
k 
) σk 

−
e (m ) 

2 ,ik 

2(1 − δ2 
k 
) σ 2 

k 

]
, 

Q 3 (νk ;Ψ (m ) 
) = 

n ∑ 

i =1 

τ (m ) 
ik 

[ 
− log 


(
νk 

2 

)
+ 

(
νk 

2 

)
log 

(
νk 

2 

)
−

(
νk 

2 

)
w 

(m ) 
ik 

+ 

(
νk 

2 

)
e (m ) 

3 ,ik 

] 
·

It can be seen that computing the Q -function requires the follow-

ing conditional expectations: 

τ (m ) 
ik 

= E 

Ψ (m ) [ Z ik | y i , x i , r i ] , 
w 

(m ) 
ik 

= E 

Ψ (m ) [ W i | y i , Z ik = 1 , x i , r i ] , 

e (m ) 
1 ,ik 

= E 

Ψ (m ) [ W i U i | y i , Z ik = 1 , x i , r i ] , 

e (m ) 
2 ,ik 

= E 

Ψ (m ) 

[
W i U 

2 
i | y i , Z ik = 1 , x i , r i 

]
, 

e (m ) 
3 ,ik 

= E 

Ψ (m ) [ log (W i ) | y i , Z ik = 1 , x i , r i ] ·
Following the expressions of these conditional expectations given

namely in the case of the standard skew t mixture model [41] , the

conditional expectations for the case of the proposed STMoE model

can be expressed similarly as: 

τ (m ) 
ik 

= 

πk ( r ;α(m ) ) ST 

(
y i ;μ( x i ;β(m ) 

k ) , σ 2(m ) 
k 

, λ(m ) 
k 

, ν(m ) 
k 

)
f (y i | r i , x i ;Ψ (m ) 

) 
, (19)

w 

(m ) 
ik 

= 

( 

ν(m ) 
k 

+ 1 

ν(m ) 
k 

+ d 2 
ik 

(m ) 

) 

×
T 
ν(m ) 

k 
+3 

(
M 

(m ) 
ik 

√ 

ν(m ) 
k 

+3 

ν(m ) 
k 

+1 

)
T 
ν(m ) 

k 
+1 

(
M 

(m ) 
ik 

) , (20)

where M 

(m ) 
ik 

= λ(m ) 
k 

d (m ) 
ik 

√ 

ν(m ) 
k 

+1 

ν(m ) 
k 

+ d 2 
ik 

(m ) , 

e (m ) 
1 ,ik 

= δ(m ) 
k 

(
y i − μk ( x i ;β(m ) 

) 
)

w 

(m ) 
ik 

+ 

[ √ 

1 − δ2 
k 

(m ) 

π f (y i | r i , x i ;Ψ (m ) 
) 

( 

d 2 
ik 

(m ) 

ν(m ) 
k 

(1 − δ2 
k 

(m ) 
) 

+ 1 

) −( 
ν
(m ) 
k 
2 +1) ]

, 

(21)

e (m ) 
2 ,ik 

= δ2 
k 

(m ) 
(

y i − μk ( x i ;β(m ) 
) 
)2 

w 

(m ) 
ik 

+ 

[(
1 − δ2 

k 

(m ) 
)
σ 2 

k 

(m ) 

+ 

δ(m ) 
k 

(
y i − μk ( x i ;β(m ) 

) 
)√ 

1 − δ2 
k 

(m ) 

π f (y i | r i , x i ;Ψ (m ) 
) 

×
( 

d 2 
ik 

(m ) 

ν(m ) 
k 

(1 − δ2 
k 

(m ) 
) 

+ 1 

) −( 
ν
(m ) 
k 
2 +1) ]

, (22)
 

(m ) 
3 ,ik 

= w 

(m ) 
ik 

− log 

( 

ν(m ) 
k 

+ d 2 
ik 

(m ) 

2 

) 

−
( 

ν(m ) 
k 

+ 1 

ν(m ) 
k 

+ d 2 
ik 

(m ) 

) 

+ ψ 

( 

ν(m ) 
k 

+ 1 

2 

) 

+ 

λ(m ) 
k 

d (m ) 
ik 

(
d 2 

ik 

(m ) − 1 

)
√ (

ν(m ) 
k 

+ 1 

)(
ν(m ) 

k 
+ d 2 

ik 

(m ) 
)3 

×
t 
ν(m ) 

k 
+1 

(
M 

(m ) 
ik 

)
T 
ν(m ) 

k 
+1 

(
M 

(m ) 
ik 

) · (23)

e note that, for (23) , we adopted a one-step-late (OSL) approach

o compute the conditional expectation e (m ) 
3 ,ik 

as described in [38] ,

y setting the integral part in the expression of the correspond-

ng conditional expectation given in [41] to zero, rather than using

 Monte Carlo approximation. We also mention that, for the mul-

ivariate skew t mixture models, recently [39] presented a series-

ased truncation approach, which exploits an exact representation

f this conditional expectation and which can also be used in place

f (23) . 

.3. M-Step 

The M-step maximizes the Q -function (18) with respect to Ψ

nd provides the parameter vector update Ψ (m +1) 
. From (18) , it

an be seen that the maximization of Q can be performed by sep-

rately maximizing Q 1 with respect to the parameters α of the

ixing proportions, and for each expert k (k = 1 , . . . , K) , Q 2 with

espect to ( β
T 
k , σ

2 
k 
) T and λk , and Q 3 with respect to νk . The max-

mization of Q 2 and Q 3 is carried out by conditional maximiza-

ion (CM) steps by updating ( βk , σ
2 
k 
) and then updating ( λ, νk )

ith the given updated parameters. This leads to the following CM

teps. On the (m + 1) th iteration of the M-step, the STMoE model

arameters are updated as follows. 

M-Step 1. Calculate α(m +1) maximizing the function Q 1 ( α;Ψ (m ) 
) :

(m +1) = arg max 
α

Q 1 ( α;Ψ (m ) 
) . (24)

ontrarily to the case of the standard mixture model and

ixture of regression models, this maximization in the case

f the proposed STMoE does not exist in closed form. It is

erformed iteratively by Iteratively Reweighted Least Squares

IRLS). 

he Iteratively Reweighted Least Squares (IRLS) algorithm. The IRLS

lgorithm is used to maximize Q 1 ( α, Ψ (m ) 
) with respect to the

arameter vector α of the softmax function in the M step at

ach iteration m of the ECM algorithm. The IRLS is a Newton–

aphson algorithm, which consists in starting with a vector α(0) ,

nd, at the l + 1 iteration, updating the estimation of α as

ollows: 

(l+1) = α(l) −
[ 
∂ 2 Q 1 ( α, Ψ (m ) 

) 

∂ α∂ αT 

] −1 

α= α(l) 

∂Q 1 ( α, Ψ (m ) 
) 

∂ α

∣∣∣
α= α(l) 

(25)

here 
∂ 2 Q 1 ( α, Ψ (m ) ) 

∂ α∂ αT and 

∂Q 1 ( α, Ψ (m ) ) 
∂ α

are respectively the Hessian

atrix and the gradient vector of Q 1 ( α, �( m ) ). At each IRLS iter-

tion the Hessian and the gradient are evaluated at α = α(l) and

re computed similarly as in [12] . The parameter update α(m +1) 

s taken at convergence of the IRLS algorithm (25) . Then, for k =
 . . . , K, 
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M-Step 2. Calculate ( β
T (m +1) 
k 

, σ 2 
k 

(m +1) 
) T by maximizing

 2 ( θk ;Ψ (m ) 
) w.r.t ( β

T 
k , σ

2 
k 
) T . For the skew t mixture of lin-

ar experts (STMoLE) case, where the expert means are linear

egressors, that is, of the form (7) , this maximization can

e performed in a closed form and provides the following

pdates: 

(m +1) 
k = 

[ n ∑ 

i =1 

τ (q ) 
ik 

w 

(m ) 
ik 

x i x 
T 
i 

] −1 n ∑ 

i =1 

τ (q ) 
ik 

(
w 

(m ) 
ik 

y i − e (m ) 
1 ,ik 

δ(m +1) 
k 

)
x i , 

(26) 

2 
k 

(m +1) = 

∑ n 
i =1 τ

(m ) 
ik 

[ 
w 

(m ) 
ik 

(
y i − β

T 
k 

(m +1) 
x i 

)2 

− 2 δ(m +1) 
k 

e (m ) 
1 ,ik 

(y i − β

2 

(
1 − δ2 

k 

(m ) 
)∑ n 

i =1 τ
(m ) 
ik 

M-Step 3. The skewness parameters λk are updated by maximiz-

ng Q 2 ( θk ;Ψ (m ) 
) w.r.t λk , with βk and σ 2 

k 
fixed at the update

(m +1) 
k 

and σ 2 
k 

(m +1) 
, respectively. It can be easily shown that the

aximization to obtain δ(m +1) 
k 

(k = 1 , . . . , K) consists in solving the

ollowing equation in δk : 

δk (1 − δ2 
k ) 

n ∑ 

i =1 

τ (m ) 
ik 

+ (1 + δ2 
k ) 

n ∑ 

i =1 

τ (m ) 
ik 

d (m +1) 
ik 

e (m ) 
1 ,ik 

σ (m +1) 
k 

− δk 

n ∑ 

i =1 

τ (m ) 
ik 

[ 
w 

(m ) 
ik 

d 2 ik 

(m +1) + 

e (m ) 
2 ,ik 

σ 2 
k 

(m +1) 

] 
= 0 · (28) 

M-Step 4. Similarly, the degrees of freedom νk are updated by

aximizing Q 3 (νk ;Ψ (m ) 
) w.r.t νk with βk and σ 2 

k 
fixed at β

(m +1) 
k 

nd σ 2 
k 

(m +1) 
, respectively. An update ν(m +1) 

k 
is calculated as solu-

ion of the following equation in νk : 

ψ 

(
νk 

2 

)
+ log 

(
νk 

2 

)
+ 1 + 

∑ n 
i =1 τ

(m ) 
ik 

(
e (m ) 

3 ,ik 
− w 

(m ) 
ik 

)
∑ n 

i =1 τ
(m ) 
ik 

= 0 . (29)

he two scalar non-linear Eqs. (28) and (29) can be solved similarly

s in the TMoE model, that is with a root finding algorithm, such

s Brent’s method [8] . 

As mentioned before, one can see that, when the robustness

arameter νk → ∞ for all the components, the parameter updates

or the STMoE model correspond to those of the SNMoE model (see

9] ). On the other hand, when the skewness parameters λk = 0 , the

TMoE parameter updates correspond to those of the TMoE model

 [9] ). Finally, when both the degrees of freedom νk → ∞ and the

kewness λk = 0 , we obtain the parameter updates of the standard

MoE model. The STMoE therefore provides a more general frame-

ork for inferring flexible MoE models and attempts to simultane-

usly accommodate data with asymmetric distribution heavy tails

nd outliers. 

Here the ECM algorithm is used to infer the STMoE model pa-

ameters. We note that there is a good generalization of the EM

lgorithm, that is the Minorization-Maximization (MM) algorithm

28] . The MM algorihm, used in the MoE framewrok namely by

20,48] can also be a good alternative to the ECM algorithm used 

ere. On the other hand, the ECM algorithm divides the space

f model-parameters to perform sequentially the optimization in

ach sub-space. It may also be convenient to divide the space of

he hidden variables and to alternate the optimisation, cyclically

ithin each sub-space. This scheme is known as the Alternating

CM (AECM) algorithm [45] . 
) 
x i ) + e (m ) 

2 ,ik 

] 
· (27) 

. Prediction using the STMoE 

The goal in regression is to be able to make predictions for the

esponse variable(s) given some new value of the predictor vari-

ble(s) on the basis of a model trained on a set of training data. In

egression analysis using mixture of experts, the aim is therefore

o predict the response y given new values of the predictors ( x , r ),

n the basis of a MoE model characterized by a parameter vector
ˆ inferred from a set of training data, here, by maximum likeli-

ood via EM. These predictions can be expressed in terms of the

redictive distribution of y , which is obtained by substituting the

aximum likelihood parameter ˆ Ψ into (1) and (2) to give: 

f (y | x , r ; ˆ Ψ ) = 

K ∑ 

k =1 

πk ( r ; ˆ α) f k (y | x ; ˆ Ψ k ) . 

sing f , we might then predict y for a given set of x ’s and r ’s as

he expected value under f , that is by calculating the prediction

ˆ  = E ˆ Ψ
(Y | r , x ) . We thus need to compute the expectation of the

ixture of experts model. It is easy to show (see for example Sec-

ion 1.2.4 in [17] ) that the mean and the variance of a mixture of

xperts distribution of the form (5) are respectively given by 

 ˆ Ψ
(Y | r , x ) = 

K ∑ 

k =1 

πk ( r ; ˆ αn ) E ˆ Ψ
(Y | Z = k, x ) , (30) 

 ˆ Ψ
(Y | r , x ) = 

K ∑ 

k =1 

πk ( r ; ˆ αn ) 
[(

E ˆ Ψ
(Y | Z = k, x ) 

)2 + V ˆ Ψ
(Y | Z = k, x ) 

]
−

[
E ˆ Ψ

(Y | r , x ) ]2 
, (31) 

here E ˆ Ψ
(Y | Z = k, x ) and V ˆ Ψ

(Y | Z = k, x ) are respectively the

omponent-specific (expert) means and variances. The mean and

he variance for the two MoE models described here are given as

ollows. 

MoE. For the NMoE model, the normal expert means and

ariances are respectively given by E ˆ Ψ
(Y | Z = k, x ) = 

ˆ β
T 

k x and

 ˆ Ψ
(Y | Z = k, x ) = ˆ σ 2 

k 
. Then, from (30) it follows that the mean of

he NMoE is given by 

 ˆ Ψ
(Y | r , x ) = 

K ∑ 

k =1 

πk ( r ; ˆ αn ) ̂  β
T 

k x . (32) 

TMoE. The mean and the variance for a skew t random variable,

or this scalar case, can be easily computed as in Section 4.2 in

4] for a non-zero location parameter. Thus, for the STMoE model,

he expert means for ˆ νk > 1 , are given by 

 ˆ Ψ
(Y | Z = k, x ) = 

ˆ β
T 

k x + ˆ σk 
ˆ δk ξ ( ̂  νk ) 

nd the expert variances for ˆ νk > 2 are given by 

 ˆ Ψ
(Y | Z = k, x ) = 

(
ˆ νk 

ˆ νk − 2 

− ˆ δ2 
k ξ

2 ( ̂  νk ) 

)
ˆ σ 2 

k , 
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1 The codes have been implemented in Matlab and are available upon request 

from the author. 
where ξ ( ̂  νk ) = 

√ 

ˆ νk 
π



(

ˆ νk 
2 

− 1 
2 

)


(

ˆ νk 
2 

) . Then, following (30) , the mean of the

proposed STMoE is thus given by: 

E ˆ Ψ
(Y | r , x ) = 

K ∑ 

k =1 

πk ( r ; ˆ α) 
(

ˆ β
T 

k x + ˆ σk 
ˆ δk ξ ( ̂  νk ) 

)
. (33)

Finally, the variance for each MoE model is obtained by using

(31) with the specified corresponding means and variances calcu-

lated in the above. 

6. Model-based clustering using the STMoE 

The MoE models can also be used for a model-based cluster-

ing perspective to provide a partition of the regression data into

K clusters. Model-based clustering using the proposed STMoE con-

sists in assuming that the observed data { x i , r i , y i } n i =1 
are generated

from a K component mixture of skew t experts, with parameter

vector Ψ where the STMoE components are interpreted as clus-

ters and hence associated to clusters. The problem of clustering

therefore becomes the one of estimating the MoE parameters Ψ ,

which is performed here by using the dedicated ECM algorithm

presented in Section 4.1 . Once the parameters are estimated, the

provided posterior component memberships τ ik given by (19) rep-

resent a fuzzy partition of the data. A hard partition of the data

can then be obtained from the posterior memberships by applying

the MAP rule, that is: 

ˆ z i = arg 
K 

max 
k =1 

ˆ τik (34)

where ˆ z i represents the estimated cluster label for the i th individ-

ual. 

7. Model selection for the STMoE 

One of the issues in mixture model-based clustering is model

selection. The problem of model selection for the STMoE mod-

els presented here in its general form is equivalent to the one of

choosing the optimal number of experts K , the degree p of the

polynomial regression and the degree q for the logistic regression.

The optimal value of the triplet ( K, p, q ) can be computed by using

some model selection criteria such as the Akaike Information Crite-

rion (AIC) [1] , the Bayesian Information Criterion (BIC) [56] or the

Integrated Classification Likelihood criterion (ICL) [6] , etc. The AIC

and BIC are are penalized observed log-likelihood criteria which

can be defined as functions to be maximized and are respectively

given by: 

AIC (K, p, q ) = log L ( ̂  �) − ηΨ , 

BIC (K, p, q ) = log L ( ̂  Ψ ) − ηΨ log (n ) 

2 

. 

The ICL criterion consists in a penalized complete-data log-

likelihood and can be expressed as follows: 

ICL (K, p, q ) = log L c ( ̂  Ψ ) − ηΨ log (n ) 

2 

. 

In the above, log L ( ̂  Ψ ) and log L c ( ̂  Ψ ) are respectively the incom-

plete (observed) data log-likelihood and the complete data log-

likelihood, obtained at convergence of the ECM algorithm for the

corresponding MoE model and ηΨ is the number of free model

parameters. The number of free parameters ηΨ is given by ηΨ =
K(p + q + 3) − q − 1 for the NMoE model and ηΨ = K(p + q + 5) −
q − 1 for the proposed STMoE model. Indeed, for each component,

the STMoE have two additional parameters to be estimated, which

are the robustness and the skewness parameters. 
However, note that in MoE it is common to use mixing propor-

ions modeled as logistic transformation of linear functions of the

ovariates, that is the covariate vector in (2) is given by r i = (1 , r i ) 
T 

corresponding to q = 2 ), r i being an univariate covariate variable.

his is also adopted in this work. Moreover, for the case of lin-

ar experts, that is when the experts are linear regressors with pa-

ameter vector βk for which the corresponding covariate vector x i 
n (7) is given by x i = (1 , x i ) 

T (corresponding to p = 2 ), r i being an

nivariate covariate variable, the model selection reduces to choos-

ng the number of experts K . Here we mainly consider this linear

ase. However, for a general use of the proposed STMoE model,

ven though the model selection criteria such as AIC, BIC, ICL can

e easily computed, the direct model selection is difficult due to

he large model space dimension ν� . A searching strategy is then

equired to optimise the way of exploring the model space. 

. Experimental study 

This section is dedicated to the evaluation of the proposed ap-

roach on simulated data and real-world data . We evaluated the

erformance of proposed ECM algorithm 

1 for the STMoE model in

erms of modeling, robustness to outliers and clustering. 

.1. Initialization and stopping rules 

The parameters αk ( k = 1 , . . . , K − 1 ) of the mixing proportions

re initialized randomly, including an initialization at the null vec-

or for one run (corresponding to equal mixing proportions). Then,

he common parameters ( βk , σ
2 
k 
) ( k = 1 , . . . , K) are initialized from

 random partition of the data into K clusters. This corresponds to

tting a normal mixture of experts where the initial values of the

arameters are respectively given by (8) and (9) with the poste-

ior memberships τ ik replaced by the hard assignments Z ik issued

rom the random partition. For the STMoE model, the robustness

arameters νk ( k = 1 , . . . , K) is initialized randomly in the range

1, 200] and the skewness parameters λk ( k = 1 , . . . , K) is initial-

zed by randomly initializing the parameter δk in (−1 , 1) from the

elation λk = 

δk √ 

1 −δ2 
k 

. Then, the proposed ECM algorithm for each

odel is stopped when the relative variation of the observed-data

og-likelihood 

log L ( Ψ (m +1) ) −log L ( Ψ (m ) ) 

| log L ( Ψ (m ) ) | reaches a prefixed threshold

for example ε = 10 −6 ). For each model, this process is repeated

0 times and the solution corresponding the highest log-likelihood

s finally selected. 

.2. Experiments on simulation data sets 

In this section we perform an experimental study on simulated

ata sets to apply and assess the proposed model. Two sets of ex-

eriments have been performed. The first experiment aims at ob-

erving the effect of the sample size on the estimation quality and

he second one aims at observing the impact of the presence of

utliers in the data on the estimation quality, that is the robust-

ess of the models. 

.2.1. Experiment 1 

For this first experiment on simulated data, each simulated

ample consisted of n observations with increasing values of the

ample size n : 50, 100, 200, 500, 1000. The simulated data are

enerated from a two component mixture of linear experts, that is

 = 2 , p = q = 1 . The covariate variables ( x i , r i ) are simulated such
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Table 1 

Parameter values used in simulation. 

Parameters 

Component 1 α1 = (0 , 10) T β1 = (0 , 1) T σ1 = 0 . 1 λ1 = 3 ν1 = 5 

Component 2 α2 = (0 , 0) T β2 = (0 , −1) T σ2 = 0 . 1 λ2 = −10 ν2 = 7 

Table 2 

MSE × 10 3 between each component of the estimated parameter vector of the STMoE model and the actual one for a varying sample size n . 

Param. α10 α11 β10 β11 β20 β21 σ 1 σ 2 λ1 λ2 ν1 ν2 

n 

50 525 5737 0.965 2.440 4.388 0.667 0.954 0.608 3115 16095 15096 4643 

100 457 1815 0.847 0.852 0.742 0.660 0.844 0.303 2013 7844 5360 263 

200 247 785 0.816 0.348 0.473 0.556 0.362 0.297 700 3847 3135 167 

500 31 565 0.363 0.091 0.314 0.398 0.091 0.061 7.8 1078 223 8.6 

10 0 0 8.5 68 0.261 0.076 0.233 0.116 0.026 0.002 2.8 554 49.4 0.79 
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Table 3 

MSE × 10 3 between the estimated mean function and the true one for each of 

the two models for a varying probability c of outliers for each simulation. The 

first column indicates the model used for generating the data and the second 

one indicates the model used for inference. 

Model c 0% 1% 2% 3% 4% 5% 

NMoE NMoE 0.178 1.057 1.241 3.631 13.25 28.96 

STMoE 0.258 0.741 0.794 0.696 0.697 0.626 

STMoE NMoE 0.710 0.7238 1.048 6.066 12.45 31.64 

STMoE 0.280 0.186 0.447 0.600 0.509 0.602 
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hat x i = r i = (1 , x i ) 
T where x i is simulated uniformly over the in-

erval (−1 , 1) . We consider each of the two models for data gener-

tion (NMoE and STMoE), that is, given the covariates, the response

 i |{ x i , r i ;Ψ } is simulated according to the generative process of the

odels (3) and (15) . For each generated sample, we fit each of the

wo models. Thus, the results are reported for the two models with

ata generated from each of them. We consider the mean square

rror (MSE) between each component of the true parameter vector

nd the estimated one, which is given by || Ψ j − ˆ Ψ j || 2 . The squared

rrors are averaged on 100 trials. The used simulation parameters

for each model are given in Table 1 . 

.2.2. Obtained results 

Table 2 shows the obtained results in terms of the MSE for the

TMoE. One can observe that, for the proposed model, the pa-

ameter estimation error is decreasing as n increases, which is re-

ated the convergence property of the maximum likelihood esti-

ator. One can also observe that the error decreases significantly

or n ≥ 500, especially for the regression coefficients and the scale

arameters. 

In addition to the previously showed results, we plotted in

igs. 1 and 2 the estimated quantities provided by applying re-

pectively the NMoE model and the proposed STMoE model, and

heir true counterparts for n = 500 for the same the data set which

as generated according the NMoE model. The upper-left plots

how the estimated mean function, the estimated expert compo-

ent mean functions, and the corresponding true ones. The upper-

ight plots show the estimated mean function with the estimated

onfidence region computed as plus and minus twice the esti-

ated (pointwise) standard deviation of the model as presented in

ection 5 , and their true counterparts. The bottom-left plots show

he true expert component mean functions and the true partition,

nd the bottom-right plots show their estimated counterparts. 

One can clearly see that the estimations provided by the pro-

osed model are very close to the true ones which correspond to

hose of the NMoE model in this case. This shows that the pro-

osed algorithm performs well and provides an additional sup-

ort to the fact that the corresponding proposed STMoE model is

ood generalization of the normal mixture of experts (NMoE), as

t clearly approaches the NMoE as shown in this simulated ex-

mples. Fig. 3 shows the true and estimated MoE mean functions

nd component mean functions by fitting the proposed STMoE

odel to a simulated data set of n = 500 observations. Each model

as considered for data generation. The upper plot corresponds to

he NMoE model and the bottom plot corresponds to the STMoE

odel. Finally, Fig. 4 shows the corresponding true and estimated

artitions. Again, one can clearly see that both the estimated mod-

ls are precise. The fitted functions are close to the true ones. In

ddition, one can also see that the partitions estimated by the
TMoE model are close the actual partitions. The proposed STMoE

odel can therefore be used as alternative to the NMoE model for

oth regression and model-based clustering. 

.2.3. Experiment 2 

In this experiment we examine the robustness of the proposed

TMoE model to outliers versus the standard NMoE one. For that,

e considered each of the two models (NMoE and STMoE) for data

eneration. For each generated sample, each of the two models in

onsidered for the inference. The data were generated exactly in

he same way as in Experiment 1, except for some observations

hich were generated with a probability c from a class of outliers.

e considered the same class of outliers as in [48] , that is the

redictor x is generated uniformly over the interval (−1 , 1) and

he response y is set the value −2 . We apply the MoE models by

etting the covariate vectors as before, that is, x = r = (1 , x ) T . We

onsidered varying probability of outliers c = 0% , 1% , 2% , 3% , 4% , 5%

nd the sample size of the generated data is n = 500 . An example

f simulated sample containing 5% outliers is shown in Fig. 5 . As a

riterion of evaluation of the impact of the outliers on the quality

f the results, we considered the MSE between the true regres-

ion mean function and the estimated one. This MSE is calculated

s 1 
n 

∑ n 
i =1 ||E Ψ (Y i | r i , x i ) − E ˆ Ψ

(Y i | r i , x i )|| 2 where the expectations are

omputed as in Section 5 . 

.2.4. Obtained results 

Table 3 shows, for each of the two models, the results in terms

f mean squared error (MSE) between the true mean function and

he estimated one, for an increasing number of outliers in the data.

irst, one can see that, when there is no outliers ( c = 0% ) and when

he data follow a NMoE distribution, the error of fitting a NMoE

s very slightly less than the one of fitting the proposed STMoE

odel. The STMoE then is still competitive. However, when the

ata do not contain outliers and follow a STMoE distribution, fit-

ing a NMoE is restrictive since the error of this one is high com-

ared to the one obtained by fitting a STMoE model. More im-

ortantly, it can be seen that, as expected, when there is outliers
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Fig. 1. Fitted NMoE model to a data set generated according to the NMoE model. 
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d  
in the data, including the situations with only few atypical data

points (1% and 2 %), the NMoE does not provide an adapted fit

and is clearly outperformed by the proposed STMoE model. This

includes the two situations, that is, including when the data are

not generated according to the STMoE model. The errors of the

NMoE model are high compared to those of the STMoE. This con-

firms that te STMoE is much more robust to outliers compared to

the normal mixture of experts because the expert components in

the STMoE model follow the robust skew t distribution. The NMoE

is sensitive to outliers. On the other hand it can be seen that, when

the number of outliers is increasing, increase in the error of the

NMoE is more pronounced compared to the one of STMoE model.

The error for the STMoE may indeed slightly increase, remain sta-

ble or even decrease in some situations. This provides an addi-

tional support to the expected robustness of the STMoE compared

to the NMoE. 

Then, in order to highlight the robustness to noise of the TMoE

and STMoE models, in addition to the previously shown numerical

results, Figs 5 and 6 show an example of results obtained on the

same data set by, respectively, the NMoE and the STMoE. The data

are generated by the NMoE model and contain c = 5% of outliers. 

In this example, we clearly see that the NMoE model is severely

affected by the outliers. It provides a rough fit especially for the

second component whose estimation is corresponds to a rough

a

pproximation due to the atypical data. However, one can see

hat the STMoE model clearly provides a precise fit; the estimated

ean function and expert components are very close to the true

nes. The STMoE is robust to outliers, in terms of estimating the

rue model as well as in terms of estimating the true partition of

he data (as shown in the middle plots of the data). Notice that

or the STMoE, the confidence regions are not shown because for

his situation the estimated degrees of freedom are less than 2

1.6097 and 1.5311) for the STMoE); Hence, the variance for this

odel in that case is not defined (see Section 5 ). The STMoE model

rovides indeed components with small degrees of freedom cor-

esponding to highly heavy tails, which allow to handle outliers

n this noisy case. While the variance is not estimable here, re-

ampling techniques can be used to evaluate it, such as the tech-

iques of [49] for producing standard errors and confidence inter-

als for mixture parameters in model-based clustering. 

.3. Application to two real-world data sets 

In this section, we consider an application to two real-world

ata sets: the tone perception data set and the temperature

nomalies data set shown in Fig. 7 . 
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Fig. 2. Fitted STMoE model to a data set generated according to the NMoE model. 
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.3.1. Tone perception data set 

The first analyzed data set is the real tone perception data set 2 

hich goes back to [14] . It was recently studied by [5,29] and

58] by using robust regression mixture models based on, respec-

ively, the t distribution and the Laplace distribution. In the tone

erception experiment, a pure fundamental tone was played to a

rained musician. Electronically generated overtones were added,

etermined by a stretching ratio (“stretch ratio” = 2) which corre-

ponds to the harmonic pattern usually heard in traditional def-

nite pitched instruments. The musician was asked to tune an

djustable tone to the octave above the fundamental tone and

 “tuned” measurement gives the ratio of the adjusted tone to

he fundamental. The obtained data consists of n = 150 pairs of

tuned” variables, considered here as predictors ( x ), and their

orresponding “strech ratio” variables considered as responses

 y ). To apply the proposed MoE models, we set the response

 i (i = 1 , . . . , 150) as the “strech ratio” variables and the covariates

 i = r i = (1 , x i ) 
T where x i is the “tuned” variable of the i th obser-

ation. We also follow the study in [5] and [58] by using two mix-

ure components. Model selection results are given later in Table 5 .

Fig. 8 shows the scatter plots of the tone perception data and

he linear expert components of the fitted NMoE model and the
2 Source: http://artax.karlin.mff.cuni.cz/r-help/library/fpc/html/tonedata.html . 

T  

O  

t  
roposed STMoE model. One can observe that we obtain a good

t with the two models. The NMoE fit differs very slightly from

he one of the STMoE. The two regression lines may correspond

o correct tuning and tuning to the first overtone, respectively, as

nalyzed in [5] . Fig. 9 shows the log-likelihood profiles for each of

he two models. It can namely be seen that training the skew t

ixture of experts may take more iterations than the normal MoE

odel. The STMoE has indeed more parameters to estimate (addi-

ional skewness and robustness parameters). However, in terms of

omputing time, the algorithm is fast and converges in only few

econds (around 10 seconds for this example) on a personal laptop

ith 2,9 GHz processor and 8 GB memory. The values of estimated

arameters for the tone perception data set are given in Table 4 .

ne can see that the regression coefficients are very similar for

he two models. One can also see that the STMoE model retrieves

 skewed component and with high degrees of freedom compared

o the other component. This one may be seen as approaching the

ne of a skew-normal MoE model, while the second one in ap-

roaching a t distribution, that is the one of a t -MoE model. 

We also performed a model selection procedure on this data

et to choose the best number of MoE components for a num-

er of components between 1 and 5. We used BIC, AIC, and ICL.

able 5 gives the obtained values of the model selection criteria.

ne can see that for the NMoE model, the three criteria overes-

imate the number of components, but for both BIC and ICL, the

http://artax.karlin.mff.cuni.cz/r-help/library/fpc/html/tonedata.html
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Fig. 3. The true and estimated mean function and expert mean functions by fitting the standard NMoE model (up) and the proposed STMoE model (bottom) to a simulated 

data set of n = 500 observations generating according to the corresponding model. 

Table 4 

Values of the estimated MoE parameters for the original Tone perception data set. 

Param. α10 α11 β10 β11 β20 β21 σ 1 σ 2 λ1 λ2 ν1 ν2 

Model 

NMoE −2.690 0.796 −0.029 0.995 1.913 0.043 0.137 0.047 – – – –

STMoE −3.044 0.824 −0.058 0.944 1.944 0.032 0.200 0.032 93.386 −0.011 19.070 1.461 

Table 5 

Choosing the number of expert components K for the original tone per- 

ception data by using the information criteria BIC, AIC, and ICL. Bold value 

indicates the highest value for each criterion. 

NMoE STMoE 

K BIC AIC ICL BIC AIC ICL 

1 1.866 6.382 1.866 69.532 77.059 69.532 

2 122.805 134.847 107.384 92.435 110.499 82.455 

3 118.193 137.763 76.524 77.9753 106.576 52.564 

4 121.703 148.798 94.460 77.7092 116.847 56.365 

5 141.696 176.318 123.655 79.043 128.719 67.748 
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solution with two components is also likely and is the most com-

petitive to the selected one with 5 components. In deed, it can be

seen that, if the number mixture of components is fixed at 4 rather

than 5, both BIC and ICL would select the right number of compo-

nents in that case. AIC performs poorly for the two models and
verestimates the number of components. On the other hand, for

he proposed STMoE model, both BIC and ICL retrieve the correct

umber of components. Then, one can conclude that the BIC and

he ICL are the criteria that one would suggest for the analysis of

his data with the proposed model. 

Now we examine the sensitivity of the MoE models to outliers

ased on this real data set. For this, we adopt the same scenario

sed in [5] and [58] (the last and more difficult scenario) by adding

0 identical pairs (0, 4) to the original data set as outliers in the y -

irection, considered as high leverage outliers. We apply the MoE

odels in the same way as before. 

The upper plots in Fig. 10 clearly show that the normal mix-

ure of experts fit is sensitive to outliers. However, note that for

his situation, compared to the normal regression mixture result in

5] , and the Laplace regression mixture and the t regression mix-

ure results in [58] , the fitted NMoE model is affected less severely

y the outliers. This may be attributed to the fact that the mixing
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Fig. 4. The true and estimated partitions by fitting the standard NMoE model (up) and the proposed STMoE model (bottom) to the simulated data sets shown in Fig. 3 . 

Table 6 

Values of the estimated MoE parameters for the tone perception data set with added outliers. 

Param. α10 α11 β10 β11 β20 β21 σ 1 σ 2 λ1 λ2 ν1 ν2 

Model 

NMoE 0.811 0.150 3.117 −0.285 1.907 0.046 0.700 0.050 – – – –

STMoE −3.004 0.732 −0.246 1.016 1.808 0.060 0.212 0.088 156.240 1.757 81.355 1.630 
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roportions here are depending on the predictors, which is not the

ase in these regression mixture models, namely those of [5] and

58] . One can also see that, even the regression mean functions are

ffected severely by the outliers, the provided partitions are still

easonable and similar to those provided in the previous non-noisy

ase. Then, the plots in Fig. 10 also clearly show that the STMoE

odel provides a precise robust fit. For the STMoE, even if the fit

iffers very slightly compared to the case with outliers, the ob-

ained fits for both situations (with and without outliers) are very

easonable. Moreover, we notice that, as showed in [58] , for this

ituation with outliers, the t mixture of regressions fails; The fit is

ffected severely by the outliers. However, for the proposed STMoE

odel, the ten high leverage outliers have no significant impact

n the fitted experts. This is because here the mixing proportions

epend on the inputs, which is not the case for the regression mix-

ure model described in [58] . Fig. 11 shows the log-likelihood pro-

les for each of the two models, which show a similar behavior

han the one in the case without outliers. The values of estimated
oE parameters in this case with outliers are given in Table 6 . One

an see that the SNMoE model parameters are identical to those

f the NMoE, with a skewness close to zero. The regression coef-

cients for the second expert component are very similar for the

wo models. For the STMoE model, it retrieves a skewed normal

omponent while the second component is approaching a t distri-

ution with a small degrees of freedom. 

.3.2. Temperature anomalies data set 

In this experiment, we examine another real-world data set re-

ated to climate change analysis. The NASA GISS Surface Tempera-

ure (GISTEMP) analysis provides a measure of the changing global

urface temperature with monthly resolution for the period since

880, when a reasonably global distribution of meteorological sta-

ions was established. The GISS analysis is updated monthly, how-

ver the data presented here 3 are updated annually as issued from
3 Source: [55] , http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl _ land.txt . 

http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land.txt
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Fig. 5. Fitted NMoE model to a data set of n = 500 observations generated according to the NMoE model and including 5% of outliers. 
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the Carbon Dioxide Information Analysis Center (CDIAC), which has

served as the primary climate-change data and information analy-

sis center of the U.S. Department of Energy since 1982. The data

consist of n = 135 yearly measurements of the global annual tem-

perature anomalies (in degrees C) computed using data from land
eteorological stations for the period of 1882 − 2012 . These data

ave been analyzed earlier by [24,25] and recently by [48] by us-

ng the Laplace mixture of linear experts (LMoLE). 

To apply the proposed non-normal mixture of expert model, we

onsider mixtures of two experts as in [48] . This number of com-
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Fig. 6. Fitted STMoE model to a data set of n = 500 observations generated according to the NMoE model and including 5% of outliers. 

p  

a  

t  

i  

w  

u  

W  

l  

i th observation. 
onents is also the one provided by the model selection criteria

s shown later in Table 8 . Indeed, as mentioned by [48] , [25] found

hat the data could be segmented into two periods of global warm-

ng (before 1940 and after 1965), separated by a transition period

here there was a slight global cooling (i.e. 1940 to 1965). Doc-
mentation of the basic analysis method is provided by [24,25] .

e set the response y i (i = 1 , . . . , 135) as the temperature anoma-

ies and the covariates x i = r i = (1 , x i ) 
T where x i is the year of the
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1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

NMoE

x

y

Cluster 1
Cluster 2
Expert mean 1
Expert mean 2

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

STMoE

x

y
Cluster 1
Cluster 2
Expert mean 1
Expert mean 2
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the perceived tone ratio. 

1 2 3 4 5 6 7 8 9 10
0

50

100

150
NMoE

EM iteration number

O
bs

er
ve

d 
da

ta
 lo

g−
lik

el
ih

oo
d

NMoE log−likelihood

0 200 400 600 800 1000 1200 1400
−40

−20

0

20

40

60

80

100

120

140
STMoE

EM iteration number

O
bs

er
ve

d 
da

ta
 lo

g−
lik

el
ih

oo
d

STMoE log−likelihood

Fig. 9. The log-likelihood during the EM iterations when fitting the MoLE models to the original tone data set with the NMoE model (left) and the STMoE model (right). 
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Fig. 11. The log-likelihood during the EM iterations when fitting the MoLE models to the tone data set with ten added outliers (0, 4) with the NMoE model (left) and the 

STMoE model (right). 

Table 7 

Values of the estimated MoE parameters for the temperature anomalies data set. 

Param. α10 α11 β10 β11 β20 β21 σ 1 σ 2 λ1 λ2 ν1 ν2 

model 

NMoE 946.483 −0.481 −12.805 0.006 −41.073 0.020 0.115 0.110 – – – –

STMoE 931.966 −0.474 −12.848 0.006 −40.876 0.020 0.113 0.105 0.024 -0.015 41.048 17.589 

Table 8 

Choosing the number of expert components K for the temperature 

anomalies data by using the information criteria BIC, AIC, and ICL. Un- 

derlined value indicates the highest value for each criterion. 

NMoE STMoE 

K BIC AIC ICL BIC AIC ICL 

1 46.062 50.420 46.062 40.971 48.234 40.971 

2 79.916 91.537 79.624 69.638 87.069 69.341 

3 71.396 90.280 58.487 54.126 81.726 30.655 

4 66.727 92.875 54.752 42.308 80.0773 20.494 

5 59.510 92.920 51.242 28.037 75.974 -8.881 
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Figs. 12–14 respectively show, for each of the two MoE models,

he two fitted linear expert components, the corresponding means

nd confidence regions computed as plus and minus twice the es-

imated (pointwise) standard deviation as presented in Section 5 ,

nd the log-likelihood profiles. One can observe that the two mod-

ls are successfully applied on the data set and provide very

imilar results. These results are also similar to those found by

48] who used a Laplace mixture of linear experts. The values of

stimated MoE parameters for the temperature anomalies data set

re given in Table 7 . One can see that the parameters common for

he two models are quasi-identical. It can also be seen the STMoE
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Fig. 12. Fitting the MoLE models to the temperature anomalies data set with the NMoE model (left) and the STMoE model (right). The predictor x is the year and the 

response y is the temperature anomaly. 
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model provides a solution with a skewness close to zero. This

may support the hypothesis of non-asymmetry for this data set.

Then, the STMoE solution provides a degrees of freedom more than

17, which tends to approach a normal distribution. On the other

hand, the regression coefficients are also similar to those found by

[48] who used a Laplace mixture of linear experts. 

We also performed a model selection procedure on the temper-

ature anomalies data set to choose the best number of MoE com-

ponents from values between 1 and 5. Table 8 gives the obtained

values of the used model selection criteria, that is BIC, AIC, and

ICL. One can see that, except the result provided by the AIC for the

NMoE model which provide a high number of components, all the

others results provide evidence for two components in the data. 

9. Concluding remarks and future work 

In this paper we proposed a new non-normal MoE model,

which generalizes the normal MoE model and attempts to simul-

taneously accommodate heavy tailed data with possible outliers
nd asymmetric distribution. The proposed STMoE is based on the

exible skew t distribution that is suggested for possibly non-

ymmetric, heavy tailed and noisy data. We developed a CEM al-

orithm for model inference and described the use of the model

n non-linear regression and prediction as well as in model-based

lustering. The developed model was successfully applied and val-

dated on simulation studies and two real data sets. The results

btained on simulated data confirm the good performance of the

odel in terms of density estimation, non-linear regression func-

ion approximation and clustering. In addition, the simulation re-

ults provide evidence of the robustness of the STMoE model to

utliers, compared to the standard alternative NMoE model. The

roposed model was also successfully applied to two different

eal data sets, including situations with outliers. The model selec-

ion using information criteria tends to promote using BIC and ICL

gainst AIC which may perform poorly in the analyzed data. The

btained results support the potential benefit of the proposed ap-

roach for practical applications. 



F. Chamroukhi / Neurocomputing 266 (2017) 390–408 407 

0 10 20 30 40 50 60 70 80
50

55

60

65

70

75

80

85

90

95

100
NMoE

EM iteration number

O
bs

er
ve

d 
da

ta
 lo

g−
lik

el
ih

oo
d

NMoE log−likelihood

0 5 10 15 20 25 30
10

20

30

40

50

60

70

80

90

100
STMoE

EM iteration number

O
bs

er
ve

d 
da

ta
 lo

g−
lik

el
ih

oo
d

STMoE log−likelihood

Fig. 14. The log-likelihood during the EM iterations when fitting the MoLE models to the temperature anomalies data set with the NMoE model (left) and the STMoE model 

(right). 
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One interesting future direction is to extend the proposed

odel to the hierarchical mixture of experts framework [34] . An-

ther natural future extension of this work is also to consider

he case of MoE for multiple regression on multivariate responses

ather than simple univariate regression. In that case, one may

onsider the multivariate skew-t and the multivariate Normal in-

erse Gaussian distribution [50] which may be more stable in high-

imensional settings compared to the multivariate skew-t. 

ppendix A. The skew-normal distribution 

As introduced by [2,3] , a random variable Y follows a univari-

te skew-normal distribution with location parameter μ ∈ R , scale

arameter σ 2 ∈ (0, ∞ ) and skewness parameter λ ∈ R if it has the

ensity 

f (y ;μ, σ 2 , λ) = 

2 

σ
φ( 

y − μ

σ
)�

(
λ( 

y − μ

σ
) 
)

(A.1) 

here φ(.) and �(.) denote, respectively, the probability density

unction (pdf) and the cumulative distribution function (cdf) of the

tandard normal distribution. It can be seen from (A.1) that when

= 0 , the skew-normal reduces to the normal distribution. As pre-

ented by [3,26] , if 

 = μ + δ| U| + 

√ 

1 − δ2 E (A.2)

here δ = 

λ√ 

1+ λ2 
, U and E are independent random variables fol-

owing the normal distribution N(0, σ 2 ), then Y follows the skew-

ormal distribution with pdf SN( μ, σ 2 , λ) given by (A.1) . In the

bove, | U | denotes the magnitude of U . This stochastic representa-

ion of the skew-normal distribution leads to the following hier-

rchical representation in an incomplete data framework, as pre-

ented in [42] : 

Y | u ∼ N 

(
μ + δ| u | , (1 − δ2 ) σ 2 

)
, 

U ∼ N (0 , σ 2 ) . (A.3) 

ppendix B. Stochastic representation of the STMoE model 

The skew t mixture of experts model is characterized as fol-

ows. Suppose that conditional on a categorical variable Z = z ∈
i i 
 1 , . . . , K} representing the hidden label of the component gener-

ting the i th observation and which, conditional on some predictor

 i , follows the multinomial distribution (B.1) : 

 i | r i ∼ Mult ( 1 ;π1 ( r i ;α) , . . . , πK ( r i ;α) ) (B.1) 

here each of the probabilities πz i ( r i ;α) = P (Z i = z i | r i ) is given by

he multinomial logistic function (2) . Now suppose a random vari-

ble Y i having the following representation: 

 i = μ( x i ;βz i 
) + σz i 

E i √ 

W i 

(B.2)

here E i and W i are independent univariate random vari-

bles with, respectively, a standard skew-normal distribution

 i ∼ SN (λz i ) , and a Gamma distribution W i ∼ Gamma ( 
νz i 
2 , 

νz i 
2 ) , and

 i and r i are some given covariate variables. Then, the variable Y i 
s said to follow the skew t mixture of experts (STMoE) defined by

13) . 
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