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a b s t r a c t

Mixture of Experts (MoE) is a popular framework for modeling heterogeneity in data for regression,
classification, and clustering. For regression and cluster analyses of continuous data, MoE usually uses
normal experts following the Gaussian distribution. However, for a set of data containing a group or
groups of observations with heavy tails or atypical observations, the use of normal experts is unsuitable
and can unduly affect the fit of the MoE model. We introduce a robust MoE modeling using the t
distribution. The proposed t MoE (TMoE) deals with these issues regarding heavy-tailed and noisy data.
We develop a dedicated expectation–maximization (EM) algorithm to estimate the parameters of the
proposed model by monotonically maximizing the observed data log-likelihood. We describe how the
presentedmodel can be used in prediction and inmodel-based clustering of regression data. The proposed
model is validated on numerical experiments carried out on simulated data, which show the effectiveness
and the robustness of the proposed model in terms of modeling non-linear regression functions as well
as in model-based clustering. Then, it is applied to the real-world data of tone perception for musical
data analysis, and the one of temperature anomalies for the analysis of climate change data. The obtained
results show the usefulness of the TMoE model for practical applications.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Mixture of experts (MoE) introduced by Jacobs, Jordan, Nowlan,
and Hinton (1991) is widely studied in statistics and machine
learning. They consist in a fully conditional mixture model where
both the mixing proportions, known as the gating functions, and
the component densities, known as the experts, are conditional on
some input covariates. MoE has been investigated, in their simple
form, as well as in their hierarchical form (Jordan & Jacobs, 1994)
(e.g. Section 5.12 of McLachlan & Peel, 2000) for regression and
model-based cluster and discriminant analyses and in different
application domains. A complete review of the MoE models can
be found in Yuksel, Wilson, and Gader (2012). For continuous data,
whichwe consider here in the context of non-linear regression and
model-based cluster analysis, MoE usually uses normal experts,
that is, expert components following the Gaussian distribution.
Along this paper, we will call it the normal mixture of experts,
abbreviated NMoE. It is well-known that the normal distribution
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is sensitive to outliers, which makes NMoE unsuitable to noisy
data. Moreover, for a set of data containing a group or groups
of observations with heavy tails, the use of normal experts may
be unsuitable and can unduly affect the fit of the MoE model. In
this paper, we attempt to overcome these limitations in MoE by
proposing a more adapted and robust MoE model which can deal
with the issues of heavy-tailed and atypical data.

The problem of sensitivity of NMoE to outliers has been
considered very recently by Nguyen and McLachlan (2016)
where the authors proposed a Laplace mixture of linear experts
(LMoLE) for a robust modeling of non-linear regression data. The
model parameters are estimated by maximizing the observed-
data likelihood via a minorization–maximization (MM) algorithm.
Here, we propose an alternative MoE model, by relying on the t
distribution. We call this proposed model the t mixture of experts,
abbreviated TMoE. The t distribution provides indeed a natural
robust extension of the normal distribution to model data with
possible outliers and tails more heavy compared to the normal
distribution. It has been considered to develop the t mixture
model proposed by Mclachlan and Peel (1998) for robust cluster
analysis of multivariate data. We also mention that Lin, Lee, and
Hsieh (2007) also proposed a mixture of skew t distributions to
deal with heavy-tailed and asymmetric distributions. However,
in the skew-t mixture model of Lin et al. (2007), the mixing
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proportions and the components means are constant, that is, they
are not predictor-depending. In the proposed TMoE, however,
we consider t expert components in which both the mixing
proportions and the mixture component means are predictor-
depending. More specifically, we use polynomial regressors for
the components, as well as multinomial logistic regressors for
the mixing proportions. In the framework of regression analysis,
recently, Bai, Yao, and Boyer (2012), Ingrassia, Minotti, and
Vittadini (2012) proposed a robust mixturemodeling of regression
on univariate data, by using a univariate t-mixture model. For the
general multivariate case using t mixtures, one can refer to for
example the two key papers Mclachlan and Peel (1998) and Peel
and Mclachlan (2000). The inference in the previously described
approaches is performed by maximum likelihood estimation via
expectation–maximization (EM) or extensions (Dempster, Laird,
& Rubin, 1977; McLachlan & Krishnan, 2008), in particular the
expectation conditional maximization (ECM) algorithm (Meng &
Rubin, 1993). For the Bayesian framework, Frühwirth-Schnatter
and Pyne (2010) have considered the Bayesian inference for
both the univariate and the multivariate skew-normal and skew-
t mixtures. For the regression context, the robust modeling of
regression data has been studied namely by Ingrassia et al. (2012),
Wei (2012) who considered a t-mixture model for regression
analysis of univariate data, as well as by Bai et al. (2012) who relied
on the M-estimate in mixture of linear regressions. In the same
context of regression, Song, Yao, and Xing (2014) proposed the
mixture of Laplace regressions, which has been then extended by
Nguyen and McLachlan (2016) to the case of mixture of experts,
by introducing the Laplace mixture of linear experts (LMoLE).
However, unlike our proposed TMoEmodel, the regressionmixture
models of Bai et al. (2012), Ingrassia et al. (2012), Song et al. (2014)
and Wei (2012) do not consider conditional mixing proportions,
that is, mixing proportions depending on some input variables, as
in the case of mixture of experts, which we investigate here.

Here we consider theMoE framework for non-linear regression
problems and model-based clustering of regression data, and
we attempt to overcome the limitations of the NMoE model for
dealing with heavy-tailed data and which may contain outliers.
We investigate the use of the t distribution for the experts, rather
than the commonly used normal distribution. The t-mixture of
experts model (TMoE) handles the issues regarding namely the
sensitivity of the NMoE to outliers. This model is an extension of
the unconditional mixture of t distributions (Mclachlan & Peel,
1998; Wei, 2012), to the mixture of experts (MoE) framework,
where the mixture means are regression functions and the mixing
proportions are covariate-varying. For the models inference, we
develop a dedicated expectation–maximization (EM) algorithm to
estimate the parameters of the proposed model by monotonically
maximizing the observed data log-likelihood. The EM algorithm
is indeed a very popular and successful estimation algorithm
for mixture models in general and for mixture of experts in
particular. Indeed, the EM algorithm for MoE has been shown
by Ng and McLachlan (2004) to be monotonically maximizing
the MoE likelihood. The authors have shown that the EM (with
IRLS in this case) algorithm has stable convergence and the log-
likelihood ismonotonically increasingwhen a learning rate smaller
than one is adopted for the IRLS procedure within the M-step
of the EM algorithm. They have further proposed an expectation
conditional maximization (ECM) algorithm to train MoE, which
also has desirable numerical properties. Beyond the frequentist
framework we consider here, we also mention the MoE has also
been considered in the Bayesian framework, for example one can
cite the Bayesian MoE Waterhouse (1997), Waterhouse, Mackay,
and Robinson (1996) and the Bayesian hierarchical MoE Bishop
and Svensén (2003). Beyond the Bayesian parametric framework,
the MoE models have also been investigated within the Bayesian
non-parametric framework. We cite for example the Bayesian
non-parametric MoEmodel (Rasmussen & Ghahramani, 2001) and
the Bayesian non-parametric hierarchical MoE approach of Shi
et al. (2005) using Gaussian Processes experts for regression. For
further models on mixture of experts for regression, the reader
can refer to for example the book of Shi and Choi (2011). In
this paper, we investigate semi-parametric models under the
maximum likelihood estimation framework.

The remainder of this paper is organized as follows. In Section 2
we briefly recall theMoE framework, particularly the NMoEmodel
and its maximum-likelihood estimation via EM. Then, in Section 3
we present the TMoE model and derive its parameter estimation
technique using the EM algorithm in Section 4. Next, in Section 5
we investigate the use of the proposed models for fitting non-
linear regression functions as well for prediction. We also show in
Section 6 how the models can be used in a model-based clustering
prospective. In Section 7, we discuss the model selection problem
for the model. In Section 8, we perform experiments to assess the
proposedmodels. Finally, Section 9 is dedicated to conclusions and
future work.

2. Mixture of experts for continuous data

Mixture of experts (Jacobs et al., 1991; Jordan & Jacobs,
1994) is used in a variety of contexts including regression,
classification and clustering. Herewe consider theMoE framework
for fitting (non-linear) regression functions and clustering of
univariate continuous data. The aim of regression is to explore the
relationship of an observed random variable Y given a covariate
vector X ∈ Rp via conditional density functions for Y |X = x
of the form f (y|x), rather than only exploring the unconditional
distribution of Y . Thanks to their great flexibility, mixture models
(McLachlan & Peel, 2000) took much attention for non-linear
regression problems and we distinguish in particular the classical
mixture of regressions model (Faria & Soromenho, 2010; Gaffney
& Smyth, 1999; Hunter & Young, 2012; Jones & McLachlan, 1992;
Quandt, 1972; Quandt & Ramsey, 1978; Veaux, 1989; Viele & Tong,
2002) and mixture of experts for regression analysis (Jacobs et al.,
1991; Jordan& Jacobs, 1994; Young&Hunter, 2010). Theunivariate
mixture of regressions model assumes that the observed pairs of
data (x, y) where y ∈ R is the response for some covariate x ∈

Rp, are generated from K regression functions and are governed
by a hidden categorical random variable Z indicating from which
component each observation is generated. Thus, the mixture of
regressions decomposes the nonlinear regression model density
f (y|x) into a convex weighted sum of K regression components
fk(y|x) and can be defined as follows:

f (y|x; Ψ) =

K
k=1

πkfk(y|x; Ψ k) (1)

where the πk’s are defined by πk = P(Z = k) and represent the
non-negative mixing proportions that sum to 1, that is, πk > 0 ∀k
and

K
k=1 πk = 1. The model parameter vector is given by Ψ =

(π1, . . . , πK−1,Ψ
T
1, . . . ,Ψ

T
K )

T , Ψ k being the parameter vector of
the kth component of the mixture density.

2.1. The mixture of experts (MoE) model

Although similar, the mixture of experts (Jacobs et al., 1991)
differs from regression mixture models in many aspects. One of
the main differences is that the MoE model consists in a fully
conditional mixture while in the regression mixture, only the
component densities are conditional on some covariates. Indeed,
the mixing proportions are constant for the regression mixture,
while in the MoE, they are modeled as a function of some
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covariates, generally modeled by logistic or a softmax function.
Mixture of experts (MoE) for regression analysis (Jacobs et al.,
1991; Jordan & Jacobs, 1994) extends the model (1) by modeling
the mixing proportions as function of some covariates r ∈ Rq. The
mixing proportions, known as the gating functions in the context
of MoE, are modeled by the multinomial logistic (softmax) model
and are defined by:

πk(r; α) = P(Z = k|r; α) =
exp(αT

k r)
K
ℓ=1

exp(αT
ℓr)

(2)

where r ∈ Rq is a covariate vector, αk is the q-dimensional co-
efficients vector associated with r and α = (αT

1, . . . ,α
T
K−1)

T is the
parameter vector of the gating network,withαK being the null vec-
tor. Thus, the MoE model consists in a fully conditional mixture
model where both the mixing proportions (the gating functions)
and the component densities (the experts) are conditional on pre-
dictors (respectively denoted here by r and x).

2.2. The normal MoE (NMoE) model and its maximum likelihood
estimation

In the case of MoE for regression, it is usually assumed that
the experts are normal, that is, follow a normal distribution. A
K -component normal MoE (NMoE) (K > 1) has the following
formulation:

f (y|r, x; Ψ) =

K
k=1

πk(r; α)N

y;µ(x; βk), σ

2
k


(3)

which involves, in the semi-parametric case, component means
defined as parametric (non-)linear regression functions µ(x; βk).

The NMoE model parameters are estimated by maximizing
the observed data log-likelihood by using the EM algorithm
(Dempster et al., 1977; Jacobs et al., 1991; Jordan & Jacobs,
1994; Jordan & Xu, 1995; McLachlan & Krishnan, 2008; Ng &
McLachlan, 2004). Suppose we observe an i.i.d. sample of n
individuals (y1, . . . , yn)with their respective associated covariates
(x1, . . . , xn) and (r1, . . . , rn). Then, under the NMoE model, the
observed data log-likelihood for the parameter vector Ψ is given
by:

log L(Ψ) =

n
i=1

log
K

k=1

πk(ri; α)N

yi;µ(xi; βk), σ

2
k


. (4)

The E-Step at the mth iteration of the EM algorithm for the
NMoE model requires the calculation of the following posterior
probability that the individual (yi, xi, ri) belongs to expert k, given
a parameter estimation Ψ (m):

τ
(m)
ik = P(Zi = k|yi, xi, ri; Ψ (m))

=

πk(ri; α(m))N

yi;µ(xi;β

(m)
k ), σ 2

k
(m)


f (yi|ri, xi; Ψ (m))
. (5)

Then, the M-step calculates the parameter update Ψ (m+1) by
maximizing the well-known Q -function (the expected complete-
data log-likelihood), that is:

Ψ (m+1)
= argmax

Ψ∈�
Q (Ψ; Ψ (m)) (6)

where� is the parameter space. For example, in the case of normal
mixture of linear experts (NMoLE) where each expert’s mean has
the following linear form:

µ(xi; βk) = βT
kxi, (7)
where βk ∈ Rp is the vector of regression coefficients of expert
component k, the updates for each of the expert component
parameters consist in analytically solving a weighted Gaussian
linear regression problem and are given by:

β
(m+1)
k =

 n
i=1

τ
(m)
ik xixTi

−1 n
i=1

τ
(q)
ik yixi, (8)

σ 2
k
(m+1)

=

n
i=1
τ
(m)
ik


yi − βT

k
(m+1)

xi
2

n
i=1
τ
(m)
ik

· (9)

For the gating network, the parameter update α(m+1) cannot
however be obtained in a closed form. It can be calculated by
Iteratively Reweighted Least Squares (IRLS) (Chamroukhi, Samé,
Govaert, & Aknin, 2009; Chen, Xu, & Chi, 1999; Green, 1984; Jacobs
et al., 1991; Jordan & Jacobs, 1994).

However, the normal distribution, used to model experts in the
NMoE model, is not adapted to deal with data with heavy tailed
data distribution and it is also known that the normal distribution
is sensitive to outliers. In the proposedmodel, we propose a robust
fitting of the MoE model, which is adapted to data with heavy-
tailed distribution and is more robust to outliers, by using the t
distribution. This is the t MoE (TMoE) model which we present in
the next section.

3. The t MoE (TMoE) model

Theproposed t MoE (TMoE)model is based on the t distribution,
which is known as a robust generalization of the normal
distribution. The t distribution is recalled in the following section.
We also describe its stochastic and hierarchical representations,
which will be used to derive those of the proposed TMoE model.

3.1. The t distribution

The use of the t distribution in standard mixture models has
been shown to be more robust than the normal distribution to
handle outliers in the data and accommodate data with heavy
tailed distribution. This has been shown in terms of density
modeling and cluster analysis for multivariate data (Mclachlan
& Peel, 1998; Peel & Mclachlan, 2000) as well as for univariate
data by using a skewed-t mixture model (Lin et al., 2007). The
t-distribution with location parameter µ ∈ R, scale parameter
σ 2

∈ (0,∞) and degrees of freedom ν ∈ (0,∞) has the prob-
ability density function

f (y;µ, σ 2, ν) =
0

ν+1
2


√
νπ 0


ν
2

 1 +
d2y
ν

−
ν+1
2

, (10)

where d2y =
 y−µ
σ

2 denotes the squaredMahalanobis distance be-
tween y and µ (σ being the scale parameter), and 0 is the Gamma
function given by 0(x) =


∞

0 xt−1e−x dx. The t distribution can
be characterized as follows. Let E be a univariate random variable
with a standard normal distribution with pdf given by φ(.). Then,
let W be a random variable independent of E and following the
gamma distribution, that is W ∼ gamma


ν
2 ,

ν
2


where the den-

sity function of the gamma distribution is given by f (u; a, b) =

{baua−1/0(a)} exp(−bu)1(0,∞)(u); (a, b) > 0 and the indicator
function 1(0,∞)(u) = 1 for u > 0 and is zero elsewhere. Then, a
random variable Y having the following representation:

Y = µ+ σ
E

√
W

(11)
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follows the t distribution tν(µ, σ 2, ν) with pdf given by (10). As
given in Liu and Rubin (1995) for the multivariate case, a hierar-
chical representation of the t distribution in this univariate case
can be expressed from the stochastic representation (11) as:

Yi|wi ∼ N

µ,
σ 2

wi


Wi ∼ gamma

ν
2
,
ν

2


.

(12)

3.2. The t MoE (TMoE) model

The proposed t MoE (TMoE) model extends the t mixture
model to the MoE framework. The mixture of t distributions
have been first proposed by Mclachlan and Peel (1998), Peel and
Mclachlan (2000) for multivariate data. For the univariate case, a
K -component t mixture model takes the following form:

f (y; Ψ) =

K
k=1

πk t(y;µk, σ
2
k , νk) (13)

where each of the mixture components has a t density given by
(10). Lin et al. (2007) proposed a mixture of skew t distributions
to deal with heavy-tailed and asymmetric distributions. However,
in the skew-t mixture model of Lin et al. (2007), the mixing
proportions and the components means are constant and are not
predictor-depending does not consider the regression problem
and is not a mixture of experts model. Wei (2012) considered
the t-mixture model for the regression context on univariate data
where the meansµk in (13) are (linear) regression functions of the
form µ(x; βk). However, this model does not explicitly model the
mixing proportions as function of the inputs; they are assumed to
be constant.

The proposed t MoE (TMoE) is MoE model with t-distributed
experts and is defined as follows. Let tν(µ, σ 2, ν) denote a t
distribution with location parameter µ, scale parameter σ and
degrees of freedom ν, whose density is given by (10). A K -
component TMoE model is then defined by:

f (y|r, x; Ψ) =

K
k=1

πk(r; α) t

y;µ(x; βk), σ

2
k , νk


(14)

whose parameter vector is given by Ψ = (αT
1, . . . ,α

T
K−1,Ψ

T
1,

. . . ,Ψ T
K )

T where Ψ k = (βT
k , σ

2
k , νk)

T is the parameter vector
for the kth expert component which has a t distribution. When
the robustness parameter νk → ∞ for each k, each t expert
component approaches a normal expert and thus the TMoE model
(14) approaches the NMoE model (3).

In the following section, we present the stochastic and
hierarchical characterizations of the proposed TMoE model and
then derive the model maximum likelihood inference scheme.

3.2.1. Stochastic representation of the TMoE
By using the stochastic representation (11) of the t distribution,

the one for the t MoE (TMoE) is derived as follows. Let E be a uni-
variate random variable following the standard normal distribu-
tion E ∼ φ(.). Suppose that, conditional on the hidden variable
Zi = zi, a random variable Wi is distributed as gamma

 νzi
2 ,

νzi
2


.

Then, given the covariates (xi, ri), a random variable Yi is said to
follow the TMoE model (14) if it has the following representation:

Yi = µ(xi; βzi)+ σzi
Ei
Wzi

, (15)

where the categorical variable Zi conditional on the covariate ri fol-
lows the multinomial distribution:

Zi|ri ∼ Mult(1;π1(ri; α), . . . , πK (ri; α)) (16)
where each of the probabilities πzi(ri; α) = P(Zi = zi|ri) is given
by the multinomial logistic function (2). In this incomplete data
framework, zi represents the hidden label of the expert component
generating the ith observation.

3.2.2. Hierarchical representation of the TMoE
By introducing the binary latent component-indicators Zik such

that Zik = 1 iff Zi = k, Zi being the hidden class label of the
ith observation, a hierarchical representation for the TMoE model
can be derived from its stochastic representation and is as follows.
From (12), (15), and (16), following the hierarchical representation
of the mixture of multivariate t-distributions (see for example
Mclachlan & Peel, 1998), the hierarchical representation of the
TMoE model is written as:

Yi|wi, Zik = 1, xi ∼ N

µ(xi; βk),

σ 2
k

wi


,

Wi|Zik = 1 ∼ gamma
νk
2
,
νk

2


Zi|ri ∼ Mult (1;π1(ri; α), . . . , πK (ri; α)) .

(17)

3.3. Identifiability of the TMoE model

Jiang and Tanner (1999b) have established that ordered, initial-
ized, and irreducible MoEs are identifiable. Ordered implies that
there exists a certain ordering relationship on the experts param-
eters Ψ k such that (αT

1,Ψ
T
1)

T
≺ · · · ≺ (αT

K ,Ψ
T
K )

T ; initialized
implies that αK , the parameter vector of the K th gating function
πK (r; α), is the null vector, and irreducible implies that Ψ k ≠ Ψ k′
for any k ≠ k′. For the proposed TMoEmodel, ordered implies that
there exists a certain ordering relationship such that (βT

1, σ
2
1 , ν1)

T

≺ · · · ≺ (βT
K , σ

2
K , νK )

T ; initialized implies that αK is the null
vector, as assumed here in the model, and finally irreducible im-
plies that if k ≠ k′, then one of the following conditions holds:
βk ≠ βk′, σk ≠ σk′, or νk ≠ νk′. Then, we can establish the
identifiability of ordered and initialized irreducible TMoE mod-
els by applying Lemma 2 of Jiang and Tanner (1999b), which re-
quires the validation of the following nondegeneracy condition.
The set {t(y;µ(x; β1), σ

2
1 , ν1), . . . , t(y;µ(x; β3K ), σ

2
3K , ν3K )} con-

tains 3K linearly independent functions of y, for any 3K distinct
triplet (µ(x; βk), σ

2
k , νk) for k = 1, . . . , 3K . Thus, via Lemma 2 of

Jiang and Tanner (1999b) we have any ordered and initialized irre-
ducible TMoE is identifiable.

4. Maximum likelihood estimation of the TMoE model

Given an i.i.d. sample ofnobservations, the unknownparameter
vector Ψ can be estimated by maximizing the observed-data log-
likelihood, which, under the TMoE model, is given by:

log L(Ψ) =

n
i=1

log
K

k=1

πk(ri; α) t

yi;µ(xi; βk), σ

2
k , νk


. (18)

To perform this maximization, we first use the EM algorithm and
then describe an extension based on the ECM algorithm (Meng &
Rubin, 1993) as in Liu and Rubin (1995) for a single t distribution,
and as inMclachlan and Peel (1998) and Peel andMclachlan (2000)
for mixture of t-distributions.

4.1. The EM algorithm for the TMoE model

To maximize the log-likelihood function (18) for the TMoE
model, the EM algorithm starts with an initial parameter vector
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Ψ (0) and alternates between the E- and M-steps until conver-
gence. The E-step computes the expected completed data log-
likelihood (the Q -function) and the M-Step maximizes it. From
the hierarchical representation of the TMoE (17), the complete
data consist of the responses (y1, . . . , yn) and their corresponding
covariates (x1, . . . , xn) and (r1, . . . , rn), as well as the latent vari-
ables (w1, . . . , wn) and the latent component labels (z1, . . . , zn).
Thus, the complete-data log-likelihood of Ψ is given by:

log Lc(Ψ) =

n
i=1

K
k=1

Zik

log (P (Zi = k|ri))+ log (f (wi|Zik = 1))

+ log (f (yi|wi, Zik = 1, xi))


= log L1c(α)+

K
k=1


log L2c(θk)+ log L3c(νk)


, (19)

where θk = (βT
k , σ

2
k )

T ,

log L1c(α) =

n
i=1

K
k=1

Zik logπk(ri; α), (20)

log L1c(θk) =

n
i=1

Zik

−

1
2
log(2π)−

1
2
log(σ 2

k )−
1
2
wid2ik


, (21)

log L3c(νk) =

n
i=1

Zik

− log0

νk
2


+

νk
2


log

νk
2


+

νk
2

− 1

log(wi)−

νk
2


wi


. (22)

4.2. E-step

The E-Step of the EM algorithm for the TMoE calculates the
Q -function, that is the conditional expectation of the complete-
data log-likelihood (19), given the observed data and a current
parameter estimation Ψ (m),m being the current iteration. It can be
seen from (20)–(22) that computing the Q -function requires the
following conditional expectations:

τ
(m)
ik = EΨ (m) [Zik|yi, xi, ri] ,

w
(m)
ik = EΨ (m) [Wi|yi, Zik = 1, xi, ri] ,

e(m)1,ik = EΨ (m) [log(Wi)|yi, Zik = 1, xi, ri] ·

It follows that the Q -function is given by:

Q (Ψ; Ψ (m)) = Q1(α; Ψ (m))+

K
k=1


Q2(θk,Ψ

(m))+ Q3(νk,Ψ
(m))


,

(23)

where

Q1(α; Ψ (m)) =

n
i=1

K
k=1

τ
(m)
ik logπk(ri; α),

Q2(θk; Ψ (m)) =

n
i=1

τ
(m)
ik


−

1
2
log(2π)−

1
2
log(σ 2

k )−
1
2
w
(m)
ik d2ik


.

Q3(νk; Ψ (m)) =

n
i=1

τ
(m)
ik


− log0

νk
2


+

νk
2


log

νk
2


−

νk
2


w
(m)
ik +

νk
2

− 1

e(m)1,ik


.

These conditional expectations are given as follows. First, the
conditional expectation EΨ (m) [Zik|yi, xi, ri], which corresponds to
the posterior component memberships, is given by:

τ
(m)
ik =

πk(ri; α(m))t(yi;µ(xi; β
(m)
k ), σ 2

k
(m)
, ν

(m)
k )

f (yi|ri, xi; Ψ (m))
· (24)

Then, it can be easily shown (see for example Liu & Rubin, 1995,
Mclachlan & Peel, 1998 and Peel & Mclachlan, 2000 for details)
that:

EΨ (m) [Wi|yi, Zik = 1, xi, ri] =
ν
(m)
k + 1

ν
(m)
k + d2ik

(m) = w
(m)
ik , (25)

EΨ (m) [log(Wi)|yi, Zik = 1, xi, ri] = log

w
(m)
ik


+


ψ


ν
(m)
k + 1

2



− log


ν
(m)
k + 1

2


= e(m)1,ik,

(26)

where ψ(x) = {∂0(x)/∂x} /0(x) is the Digamma function.

4.3. M-step

In the M-step, as it can be seen from (23), the Q -function can
be maximized by independently maximizing Q1(α; Ψ (m)), and, for
each k, Q2(9k; Ψ (m)), Q3(νk; Ψ (m)), with respect to α, 9k and νk,
respectively. Thus, on the (m+ 1)th iteration of the EM algorithm,
the model parameters are updated as follows.
M-step 1. Calculate α(m+1) by maximizing Q1(α; Ψ (m))w.r.t. α:

α(m+1)
= argmax

α
Q1(α; Ψ (m)). (27)

Unlike the case of the standard t mixture model (e.g., Mclachlan &
Peel, 1998, Peel &Mclachlan, 2000) and t regressionmixturemodel
(Bai et al., 2012; Ingrassia et al., 2012; Wei, 2012), for which the
mixing proportions are not predictor-depending and their update
is done in closed form, for the proposed TMoE does, there is no
closed form solution to update the gating network parameters. This
is performed by Iteratively Reweighted Least Squares (IRLS).
The Iteratively Reweighted Least Squares (IRLS) algorithm:

The IRLS algorithm is used to maximize Q1(α,Ψ
(m)) with

respect to the parameter α in the M-Step at each iteration m of
the EM algorithm. The IRLS is a Newton–Raphson algorithm and
consists in starting with an initial vector α(0), and, at the (l + 1)th
iteration of the IRLS, updating the estimation of α as follows:

α(l+1)
= α(l) −

∂2Q1(α,Ψ
(m))

∂α∂αT

−1

α=α(l)

∂Q1(α,Ψ
(m))

∂α


α=α(l)

(28)

where ∂2Q1(α,Ψ
(m))

∂α∂αT and ∂Q1(α,Ψ
(m))

∂α
are respectively the Hessian

matrix and the gradient vector of Q1(α,9
(m)). At each IRLS

iteration theHessian and the gradient are evaluated atα = α(l) and
are computed analytically similarly as in Chamroukhi et al. (2009).
The parameter update α(m+1) in (27) is taken at convergence of the
IRLS algorithm (28). Then, for k = 1 . . . , K :

M-Step 2. Calculate θ
(m+1)
k by maximizing Q2(θk; Ψ (m)) w.r.t. θk =

(βT
k , σ

2
k )

T . This is achieved by first maximizing Q2(θk; Ψ (m)) w.r.t.
βk and then w.r.t. σ 2

k . For the t mixture of linear experts (TMoLE)
case where the expert means have the form (7), this maximization
is performed analytically and provides the following updates:

β
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 n
i=1
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ik w

(m)
ik xixTi

−1 n
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. (30)
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Here, we note that, following Kent, Tyler, and Vardi (1994) in
the case of ML estimation for single component t distribution
and Mclachlan and Peel (1998), Peel and Mclachlan (2000) for
mixture of multivariate t distributions, the EM algorithm can be
modified slightly by replacing the divisor

n
i=1 τ

(m)
ik in (30) byn

i=1 τ
(m)
ik w

(m)
ik . This modified algorithm may converge faster than

the conventional EM algorithm.

M-Step 3. Calculate ν(m+1)
k by maximizing Q3(νk; Ψ (m)) w.r.t. νk.

The degrees of freedom update ν(m+1)
k is therefore obtained by

iteratively solving the following equation for νk:
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− log
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2


= 0. (31)

This scalar non-linear equation can be solved with a root finding
algorithm, such as Brent’s method (Brent, 1973).

It is obvious to see that, as mentioned previously, if the number
of degrees of freedom νk approaches infinity for all k, then the
parameter updates for the TMoE model are exactly those of the
NMoE model (since wik tends to 1 in that case). The TMoE model
constitutes therefore a robust generalization of the NMoE model,
which is able to model data with density heaving longer tails than
those of the NMoE model.

After deriving the EM algorithm for the parameter estimation
of the TMoE model, now we describe an ECM extension.

4.4. The ECM algorithm for the TMoE model

Following the ECM extension of the EM algorithm for a single t
distribution proposed by Liu and Rubin (1995) and the one of the
EM algorithm for the t-mixture model (Mclachlan & Peel, 1998;
Peel &Mclachlan, 2000), the EM algorithm for the TMoEmodel can
also be modified to give an ECM version by adding an additional
E-Step between the two M-steps 2 and 3. This additional E-step
consists in taking the parameter vectorΨ with θk = θ

(m+1)
k instead

of θ(m)k , that is

Q3(νk; Ψ (m)) = Q3(νk; α(m), θ
(m+1)
k , ν

(m)
k ).

Thus, the M-Step 3 in the above is replaced by a Conditional-
Maximization (CM)-Step in which the degrees of freedom update
(31) is calculated with the conditional expectation (25) and
(26) computed with the updated parameters β

(m+1)
k and σ 2

k
(m+1)

respectively given by (29) and (30).
The TMoE handles therefore the problem of heavy tailed data

possibly affected by outliers. It therefore provides a more robust
modeling framework for fitting MoE to data. In the next section,
we show how to use the TMoE in fitting regression functions and
clustering, and we discuss the question of model selection.

5. Prediction using the TMoE

The goal in regression is to be able to make predictions for
the response variable(s) given some new value of the predictor
variable(s) on the basis of a model trained on a set of training data.
In regression analysis usingMoE, the aim is therefore to predict the
response y given new values of the predictors (x, r), on the basis of
a MoE model characterized by a parameter vector Ψ̂ inferred from
a set of training data, here, by maximum likelihood via EM. These
predictions can be expressed in terms of the predictive distribution
of y, which is obtained by substituting the maximum likelihood
parameter Ψ̂ into (1)–(2) to give:

f (y|x, r; Ψ̂) =

K
k=1

πk(r; α̂)fk(y|x; Ψ̂ k).

Using f , we might then predict y for a given set of x’s and r ’s as
the expected value under f , that is by calculating the prediction
ŷ = EΨ̂ (Y |r, x). We thus need to compute the expectation of the
MoE model. It is easy to show (see for example Section 1.2.4 in
Frühwirth-Schnatter, 2006) that the mean and the variance of a
MoE distribution of the form (5) are respectively given by:

EΨ̂ (Y |r, x) =

K
k=1

πk(r; α̂n)EΨ̂ (Y |Z = k, x), (32)

VΨ̂ (Y |r, x) =

K
k=1

πk(r; α̂n)


EΨ̂ (Y |Z = k, x)
2

+ VΨ̂ (Y |Z = k, x)

−

EΨ̂ (Y |r, x)

2
, (33)

where EΨ̂ (Y |Z = k, x) and VΨ̂ (Y |Z = k, x) are respectively
the component-specific (expert) means and variances. The mean
and the variance for the MoE models described here are given as
follows.

NMoE. For the NMoE model, the normal expert means and
variances are respectively EΨ̂ (Y |Z = k, x) = β̂

T
kx and VΨ̂ (Y |Z =

k, x) = σ̂ 2
k .

TMoE. For the TMoE model, by using the expressions of the mean
and the variance of the t distribution, it follows that for the TMoE
model, for ν̂k > 1, the expert means are EΨ̂ (Y |Z = k, x) = β̂

T
kx

and, for ν̂k > 2, the expert variances are VΨ̂ (Y |Z = k, x) =

ν̂k
ν̂k−2 σ̂

2
k .

6. Model-based clustering using the TMoE

It is natural to utilize the MoE models for a model-based
clustering perspective to provide a partition of the regression data
into K clusters. Model-based clustering using the TMoE, as in MoE
in general, consists in assuming that the observed data {xi, ri, yi}ni=1
are generated from a K component mixture of t experts with
parameter vector Ψ . The mixture components can be interpreted
as clusters and hence each cluster can be associatedwith amixture
component. The problem of clustering therefore becomes the
one of estimating the MoE parameters Ψ , which is performed
here by using dedicated EM algorithms. Once the parameters are
estimated, the provided posterior component memberships τ̂ik
defined in (24) represent a fuzzy partition of the data. A hard
partition of the data can then be obtained by applying the optimal
Bayes’ allocation rule, that is:

ẑi = arg
K

max
k=1

τ̂ik (34)

where ẑi represents the estimated cluster label for the ith
observation.

7. Model selection for the NNMoE

One of the issues in mixture model-based clustering is model
selection. The problem of model selection for the TMoE model
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presented here in its general form, is equivalent to the one
of choosing the optimal number of experts K , the degree p
of the polynomial regression and the degree q for the logistic
regression. The optimal value of (K , p, q) can be computed by
using somemodel selection criteria such as the Akaike Information
Criterion (AIC) (Akaike, 1974), the Bayesian Information Criterion
(BIC) (Schwarz, 1978) or the Integrated Classification Likelihood
criterion (ICL) (Biernacki, Celeux, &Govaert, 2000), etc. The AIC and
BIC are penalized observed data log-likelihood criteria which can
be defined as functions to bemaximized and are respectively given
by:

AIC(K , p, q) = log L(9̂)−
ηΨ log(n)

2
,

BIC(K , p, q) = log L(Ψ̂)−
ηΨ log(n)

2
.

The ICL criterion consists in a penalized complete-data log-
likelihood and can be expressed as:

ICL(K , p, q) = log Lc(Ψ̂)−
ηΨ log(n)

2
.

In the above, log L(Ψ̂) and log Lc(Ψ̂) are respectively the incom-
plete (observed) data log-likelihood and the complete data log-
likelihood, obtained at convergence of the E(C)M algorithm for the
corresponding MoE model. The number of free parameters of the
model ηΨ is given by ηΨ = K(p + q + 3) − q − 1 for the NMoE
model and ηΨ = K(p + q + 4)− q − 1 for the TMoE model.

However, note that inMoE it is common to use gating functions
modeled as logistic transformation of linear functions of the
covariates, that is the covariate vector in (2) is given by ri = (1, ri)T
(corresponding to q = 2), ri being a univariate covariate variable.
This is what we adopted in this work. Moreover, for the case of
linear experts, that is when the experts are linear regressors with
parameter vector βk for which the corresponding covariate vector
xi in (7) is given by xi = (1, xi)T (corresponding to p = 2),
xi being a univariate covariate variable possibly different from ri,
the model selection reduces to choosing the number of experts
K . Here in the presented experiments we mainly consider this
linear case for the expert components. Notice that the overall
modeling problem is still non-linear and is adapted to fit non-linear
regression functions.

8. Experimental study

This section is dedicated to the evaluation of the proposed
approach on simulated data and real-world data.We evaluated the
performance of proposed EM algorithm by comparing it with the
standard normal MoE (NMoE) model (Jacobs et al., 1991; Jordan &
Jacobs, 1994) and the LaplaceMoE of (Nguyen&McLachlan, 2016)1
on both simulated and real-world data sets.

8.1. Initialization and stopping rules

The parametersαk (k = 1, . . . , K−1) of themixing proportions
are initialized randomly, including an initialization at the null
vector for one run (corresponding to equal mixing proportions).
Then, the common parameters (βk, σ

2
k ) (k = 1, . . . , K) are

initialized from a random partition of the data into K clusters. This
corresponds to fitting a normal MoE where the initial values of the
parameters are respectively given by (8) and (9) with the posterior
memberships τik replaced by the hard assignments Zik issued

1 All the algorithmshave been implemented inMatlab and the codes are available
upon request from the author.
from the random partition. For the TMoE model, the robustness
parameter νk (k = 1, . . . , K) is initialized randomly in the range
[1, 200]. For the LMoE model

f (y|r, x; Ψ) =

K
k=1

πk(r; α) Laplace(y;µ(x; βk), λk), (35)

the scale parameter λk is initialized in a similar way as σ 2
k .

Then, the algorithms are stopped when the relative variation of
the observed-data log-likelihood log L(Ψ (m+1))−log L(Ψ (m))

| log L(Ψ (m))|
reaches a

prefixed threshold (for example ϵ = 10−6). For each model, this
process is repeated 10 times and the solution corresponding the
highest log-likelihood is finally selected.

8.2. Experiments on simulation data sets

In this section we perform an experimental study on simulated
data sets to apply and assess the proposed model. Two sets of
experiments have been performed. The first experiment aims at
observing the effect of the sample size on the estimation quality
and the second one aims at observing the impact of the presence of
outliers in the data on the estimation quality, that is the robustness
of the models.

8.2.1. Experiment 1
For this first experiment on simulated data, each simulated

sample consisted of n observations with increasing values of the
sample size n : 50, 100, 200, 500, 1000. The simulated data are
generated from a two component mixture of linear experts, that is
K = 2, p = q = 1. The covariate variables (xi, ri) are simulated
such that xi = ri = (1, xi)T where xi is simulated uniformly over
the interval (−1, 1). We consider each of the three models (NMoE,
LMoE, TMoE) for data generation, that is, given the covariates,
the response yi|{xi, ri; Ψ} is simulated according to the generative
process of themodels (3), (35) and (14). For each generated sample,
we fit each of the four models. Thus, the results are reported for all
the models with data generated from each of the two models. We
consider the mean square error (MSE) between each component
of the true parameter vector and the estimated one, which is given
by ∥Ψ j − Ψ̂ j∥

2. The squared errors are averaged on 100 trials. The
used simulation parameters Ψ for each model are given in Table 1.

8.2.2. Obtained results
Table 2 shows the obtained results in terms of the MSE for

the TMoE. One can observe that the parameter estimation error
is decreasing as n increases, which illustrates the convergence
property of the maximum likelihood estimator of the model. For
details on the convergence property of the MLE for MoE, see for
example Jiang and Tanner (1999a). One can also observe that
the error decreases significantly for n ≥ 500, especially for the
regression coefficients and the scale parameters.

In addition to the previously shown results, we plotted in
Figs. 1–3 the estimated quantities provided by applying the
proposed model and their true counterparts for n = 500 for the
same the data set which was generated according to the normal
MoE model. The upper-left plot of each of these figures shows
the estimated mean function, the estimated expert component
mean functions, and the corresponding true ones. The upper-
right plot shows the estimated mean function and the estimated
confidence region computed as plus andminus twice the estimated
(pointwise) standard deviation of the model as presented in
Section 5, and their true counterparts. The bottom-left plot shows
the true expert component mean functions and the true partition,
and the bottom-right plot shows their estimated counterparts.
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Fig. 1. Fitted NMoE model to a data set generated according to the NMoE model.
Fig. 2. Fitted LMoE model to a data set generated according to the NMoE model.
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Fig. 3. Fitted TMoE model to a data set generated according to the NMoE model.
Table 1
Parameter values used in simulation.

Parameters

Component 1 α1 = (0, 10)T β1 = (0, 1)T σ1 = 0.1 ν1 = 5 λ1 = 0.1
Component 2 α2 = (0, 0)T β2 = (0,−1)T σ2 = 0.1 ν2 = 7 λ2 = 0.1
Table 2
MSE between each component of the estimated parameter vector of the TMoE model and the actual one for a varying sample size n.

n Param.
α10 α11 β10 β11 β20 β21 σ1 σ2 ν1 ν2

50 1.3059 6.4611 0.0214130 0.0290114 0.0044140 0.0192600 0.0010655 0.0003317 37.956 11.722
100 1.2150 4.5056 0.0024706 0.0117546 0.0005275 0.0007891 0.0001450 0.0002301 6.1528 10.412
200 0.0341 3.8193 0.0001553 0.0007335 0.0002022 0.0005061 0.0000504 0.0000262 2.0975 6.3710
500 0.0356 2.2633 0.0000112 0.0000214 0.0001337 0.0002163 0.0000126 0.0000007 0.4859 5.4937

1000 0.0053 1.2510 0.0000018 0.0000258 0.0000005 0.0000427 0.0000126 0.0000004 0.0014 2.7844
One can clearly see that the estimations provided by the pro-
posedmodel are quasi identical to the true ones which correspond
to those of the NMoE model in this case. This provides an addi-
tional support to the fact that the proposed algorithm performs
well and the proposed TMoE model is a good generalization of the
normal MoE (NMoE), as it clearly approaches the NMoE as shown
in these simulated examples. The proposed TMoE also provides
quasi-identical results to the LMoE model.

8.2.3. Experiment 2
In this experiment we examine the robustness of the proposed

model to outliers versus the standard NMoE one. For that, we
considered each of the three models (NMoE, LMoE, TMoE) for
data generation. For each generated sample, each of the two
models is considered for the inference. The data were generated
exactly in the same way as in Experiment 1, except for some
observations which were generated with a probability c from a
class of outliers. We considered the same class of outliers as in
Nguyen and McLachlan (2016), that is, the predictor x is generated
uniformly over the interval (−1, 1) and the response y is set the
value −2. We apply the MoE models by setting the covariate
vectors as before, that is, x = r = (1, x)T . We considered
varying probability of outliers c = 0%, 1%, 2%, 3%, 4%, 5% and the
sample size of the generated data is n = 500. An example of
simulated sample containing 5% outliers is shown in Fig. 4. As a
criterion of evaluation of the impact of the outliers on the quality
of the results, we considered the MSE between the true regression
mean function and the estimated one. This MSE is calculated as
1
n

n
i=1∥EΨ (Yi|ri, xi) − EΨ̂ (Yi|ri, xi)∥2 where the expectations are

computed as in Section 5.

8.2.4. Obtained results
Table 3 shows, for each of the two models, the results in terms

of mean squared error (MSE) between the true mean function and
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Table 3
MSE between the estimated mean function and the true one for each of the four models for a varying probability c of outliers for each simulation. The first column indicates
the model used for generating the data and the second one indicates the model used for inference.

Model c
0% 1% 2% 3% 4% 5%

NMoE
NMoE 0.000178 0.001057 0.001241 0.003631 0.013257 0.028966
LMoE 0.000144 0.000389 0.000686 0.000153 0.000296 0.000121
TMoE 0.000168 0.000566 0.000464 0.000221 0.000263 0.000045

LMoE
NMoE 0.000287 0.003830 0.003740 0.010631 0.021247 0.026198
LMoE 0.000126 0.000378 0.000125 0.000270 0.000165 0.000605
TMoE 0.000183 0.000273 0.000236 0.000182 0.000168 0.000070

TMoE
NMoE 0.000257 0.0004660 0.002779 0.015692 0.005823 0.005419
LMoE 0.000288 0.0004568 0.000205 0.000133 0.000146 0.000307
TMoE 0.000252 0.0002520 0.000144 0.000157 0.000488 0.000245
the estimated one, for an increasing number of outliers in the data.
First, one can see that, when there are no outliers (c = 0%),
the error of the TMoE is less than those of the NMoE model, for
the two situations, that is including the case where the data are
not generated according to the TMoE model, which is somewhat
surprising. This includes the case where the data are generated
according to the NMoE model, for which the TMoE error is slightly
less than the one of theNMoEmodel. Then, it can be seen thatwhen
there are outliers, the TMoE model clearly outperforms the NMoE
model for all the situations. This confirms that the TMoE model is
muchmore robust to outliers compared to the normal one because
the expert components in TMoE follow a robust distribution, that
is the t distribution. Furthermore, it can be seen that, when the
number of outliers is increasing, the increase in the error of the
NMoE model is more pronounced compared to the one of the
TMoE model. The error for the TMoE may indeed slightly increase,
remains stable or even slightly decreases in some situations when
the data are generated according to the TMoEmodel. This supports
the expected robustness of the TMoE and the fact that the NMoE is
severely affected by outliers. To make comparison with the LMoE,
which is also clearly more robust that the NMoE, it can be seen
that for some situations the LMoEprovides better results compared
to the TMoE, however, the overall results favor the TMoE model,
namely in the situation where the noise is relatively high (5% of
outliers). To highlight the robustness to noise of the TMoE model,
in addition to the previously shown numerical results, Figs. 4–6
show an example of results obtained on the same data set by,
respectively, the NMoE, the LMoE, and the TMoE. The data are
generated by the NMoE model and contain c = 5% of outliers.

In this example, we clearly see that the NMoEmodel is severely
affected by the outliers. It provides a rough fit especially for the
second component whose estimation is affected by the outliers.
However, one can see that the TMoE model provides a precise fit;
the estimated mean functions and expert components are very
close to the true ones. The TMoE is robust to outliers, in terms of
estimating the truemodel aswell as in terms of estimating the true
partition of the data (as shown in the middle plots). The solution
is also very close to the one provided by the LMoE model. Notice
that for the TMoE the confidence region is not shown because for
this situation the estimated degrees of freedom are less than 2
(1.5985 and 1.5253) for the TMoE; Hence the variance for the TMoE
in that case is not defined (see Section 5). The TMoEmodel provides
indeed components with small degrees of freedom corresponding
to highly heavy tails, which allow to handle outliers in this noisy
case.

8.3. Application to two real-world data sets

In this section, we consider an application to two real-world
data sets: the tone perception data set and the temperature
anomalies data set shown in Fig. 7.
8.3.1. Tone perception data set
The first analyzed data set is the real tone perception data set2

which goes back to Cohen (1984). It was recently studied by Bai
et al. (2012) and Song et al. (2014) by using robust regression
mixture models based on, respectively, the t distribution and the
Laplace distribution. In the tone perception experiment, a pure
fundamental tone was played to a trained musician. Electronically
generated overtones were added, determined by a stretching ratio
(‘‘stretch ratio’’ = 2) which corresponds to the harmonic pattern
usually heard in traditional definite pitched instruments. The
musician was asked to tune an adjustable tone to the octave above
the fundamental tone and a ‘‘tuned’’ measurement gives the ratio
of the adjusted tone to the fundamental. The obtained data consists
of n = 150pairs of ‘‘tuned’’ variables, considered here as predictors
(x), and their corresponding ‘‘stretch ratio’’ variables considered as
responses (y). To apply theMoEmodels, we set the response yi (i =

1, . . . , 150) as the ‘‘stretch ratio’’ variables and the covariates xi =

ri = (1, xi)T where xi is the ‘‘tuned’’ variable of the ith observation.
We also follow the study in Bai et al. (2012) and Song et al. (2014)
by using two mixture components. The model selection results,
given later in Table 5, confirm two-components are present in the
data when using the TMoE model and the Bayesian Information
Criterion (Schwarz, 1978).

Fig. 8 shows the scatter plots of the tone perception data
and the linear expert components of the fitted NMoE model, the
LMoE model, and the proposed TMoE model. One can observe that
we obtain a reasonable fit with the three models. But the one
of the NMoE differs slightly from the one of the LMoE and the
one of the TMoE (which are quasi-identical), and which, upon a
visual inspection, can be seen more adapted by better fitting the
two regression lines to the data. The two regression lines may
correspond to correct tuning and tuning to the first overtone,
respectively, as analyzed in Bai et al. (2012) (also see Song et al.,
2014 for the analysis).

Fig. 9 shows the log-likelihood profiles for each of the two
models. It can namely be seen that training the t MoE for this
experiment may take more iterations than the normal MoEmodel.
The TMoE has indeed more parameters to estimate than the NMoE
one, that is, the robustness parameters νk. However, in terms of
computing time, the models converge in only few seconds on a
personal laptop (with 2.9 GHz processor and 8 GB memory).

The values of estimated parameters for the tone perception data
set are given in Table 4. One can see that the regression coefficients
are very similar for all themodels, except for the first component of
the NMoEmodel. This can be observed on the fit in Fig. 8 where the
first expert component for the NMoE model slightly differs from
the corresponding one of both the LMoE model and the proposed
TMoE model. In addition, it can be seen from the values of the

2 Source: http://artax.karlin.mff.cuni.cz/r-help/library/fpc/html/tonedata.html.

http://artax.karlin.mff.cuni.cz/r-help/library/fpc/html/tonedata.html
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Fig. 4. Fitted NMoE model to a data set of n = 500 observations generated according to the NMoE model and including 5% of outliers.
Table 4
Values of the estimated MoE parameters for the original tone perception data set.

Model Param.
α10 α11 β10 β11 β20 β21 σ1 σ2 λ1 λ2 ν1 ν2

NMoE −2.690 0.796 −0.029 0.995 1.913 0.043 0.137 0.047 – – – –
LMoE −0.460 0.087 0.0036 0.998 1.961 0.023 – – 0.049 0.030 – –
TMoE −0.058 −0.070 0.002 0.999 1.956 0.027 0.002 0.029 – – 0.555 2.017
Table 5
Choosing the number of expert components K for the original tone perception data by using the information criteria BIC, AIC, and ICL. Underlined value indicates the highest
value for each criterion.

K NMoE LMoE TMoE
BIC AIC ICL BIC AIC ICL BIC AIC ICL

1 1.8662 6.3821 1.8662 36.8061 41.3220 −7.5160 71.3931 77.4143 71.3931
2 122.8050 134.8476 107.3840 149.6360 161.6786 −20.0425 204.8241 219.8773 186.8415
3 118.1939 137.7630 76.5249 209.1995 228.7687 −32.5691 199.4030 223.4880 183.0389
4 121.7031 148.7989 94.4606 204.3286 231.4244 −45.0957 201.8046 234.9216 187.7673
5 141.6961 176.3184 123.6550 141.3988 176.0211 −57.6223 187.8652 230.0141 164.9629
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Fig. 5. Fitted LMoE model to a data set of n = 500 observations generated according to the NMoE model and including 5% of outliers (the same data set shown in Fig. 4).
common parameters that the LMoE and the TMoE provide very
close results.

We also performed a model selection procedure on this data
set to choose the best number of MoE components for a number
of components between 1 and 5. We used BIC, AIC, and ICL.
Table 5 gives the obtained values of the model selection criteria.
One can see that the NMoE model overestimates the number of
components. AIC performs poorly for all the models. BIC provides
the correct number of components for the proposed TMoE model
but seems to overestimate the number of components for the
LMoE model (provides evidence for 3 components). ICL hesitates
between 2 (the correct number) and 4 components for the TMoE
model. One can conclude that the BIC is the criterion to be
suggested for the analysis. Thus, from this experiment, it would be
more adapted to use BIC with the proposed TMoE model.
Robustness to outliers. Now we examine the sensitivity of the MoE
models to outliers based on this real data set. For this, we adopt the
same scenario used in Bai et al. (2012) and Song et al. (2014) (the
last and more difficult scenario) by adding 10 identical pairs (0, 4)
to the original data set as outliers in the y-direction, considered as
high leverage outliers. We apply the MoE models in the same way
as before.

The left plot in Fig. 10 shows that the normal MoE is sensitive
to outliers. However, compared to the normal regression mixture
result in Bai et al. (2012), and the Laplace regression mixture
and the t regression mixture results in Song et al. (2014), the
fitted NMoE is affected less severely by the outliers. This may
be attributed to the fact that the mixing proportions here are
depending on the predictors, which is not the case in these
regression mixture models, namely the ones of Bai et al. (2012),
and Song et al. (2014). One can also see that, even the regression
mean functions are affected severely by the outliers, the provided
partitions are still reasonable and similar to those provided in the
previous non-noisy case. Then, the middle plot of in Fig. 10 shows
that the LMoE model is more robust to outliers compared to the
NMoEmodel, however, the regression line is not verywell adjusted
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Fig. 6. Fitted TMoE model to a data set of n = 500 observations generated according to the NMoE model and including 5% of outliers (the same data set shown in Fig. 4).
Fig. 7. Scatter plots of the tone perception data and the temperature anomalies data.
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Fig. 8. The fitted MoLE to the original tone data set with left: NMoE solution, middle: LMoE solution, and right: TMoEmodel solution. The predictor x is the actual tone ratio
and the response y is the perceived tone ratio.
Fig. 9. The log-likelihood during the iterations when fitting the MoLE models to the original tone data set. Left: NMoE model, Middle: LMoE model, Right: TMoE model.
Fig. 10. Fitting MoLE to the tone data set with ten added outliers (0, 4). Left: NMoE model fit, Middle: LMoE model fit, Right: TMoE model fit. The predictor x is the actual
tone ratio and the response y is the perceived tone ratio.
Fig. 11. The log-likelihood during the EM iterations when fitting the MoLE models to the tone data set with ten added outliers (0, 4). Left: NMoE model, Middle LMoE, and
Right: TMoE model.
to the data. However, the right plot in Fig. 10 clearly shows that the
TMoE provides a robust good fit, which is preferred to the LMoE
solution. For the TMoE, the obtained fit is quasi-identical to the
first one on the original data without outliers, shown in the right
plot of Fig. 8. Moreover, we notice that, as shown in Song et al.
(2014), for this situation with outliers, the t mixture of regressions
fails; The fit is affected severely by the outliers. However, for the
proposed TMoE model, the ten high leverage outliers have no
significant impact on the fitted experts. This is because here the
mixing proportions depend on the inputs, which is not the case for
the regression mixture model described in Song et al. (2014).

Fig. 11 shows the log-likelihood profiles for each of the three
models, which, while showing a similar behavior than the one in
the casewithout outliers, show that themaximum likelihood value
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Table 6
Values of the estimated MoE parameters for the tone perception data set with added outliers.

Model Param.
α10 α11 β10 β11 β20 β21 σ1 σ2 λ1 λ2 ν1 ν2

NMoE 0.811 0.150 3.117 −0.285 1.907 0.046 0.700 0.050 – – – –
LMoE −0.557 −0.232 1.606 0.3047 1.9524 0.027 – – 0.546 0.038 – –
TMoE 0.888 −0.236 0.002 0.999 1.971 0.020 0.002 0.024 – – 0.682 0.812
Table 7
Values of the estimated MoE parameters for the temperature anomalies data set.

Model Param.
α10 α11 β10 β11 β20 β21 σ1 σ2 λ1 λ2 ν1 ν2

NMoE 946.483 −0.481 −12.805 0.006 −41.073 0.020 0.115 0.110 – – – –
LMoE 354.076 −0.180 −13.026 0.006 −40.796 0.020 – – 0.092 0.088 – –
TMoE 947.225 −0.482 −12.825 0.006 −41.008 0.020 0.114 0.108 – – 70.82 54.38
Table 8
Choosing the number of expert components K for the temperature anomalies data by using the information criteria BIC, AIC, and ICL. Underlined value indicates the highest
value for each criterion.

K NMoE LMoE TMoE
BIC AIC ICL BIC AIC ICL BIC AIC ICL

1 46.0623 50.4202 46.0623 39.2617 43.6196 −7.3579 43.5521 49.3627 43.5521
2 79.9163 91.5374 79.6241 71.0153 82.6364 −19.6211 74.7960 89.3224 74.5279
3 71.3963 90.2806 58.4874 61.9639 80.8482 −31.8843 63.9709 87.2131 47.3643
4 66.7276 92.8751 54.7524 49.9480 76.0955 −44.1475 56.8410 88.7990 45.1251
5 59.5100 92.9206 51.2429 40.3062 73.7169 −56.4107 43.7767 84.4505 29.3881
for the NMoE model is significantly less than the one in the case
without outliers, compared to the best solution which is provided
by the TMoE model.

The values of estimated MoE parameters in this case with
outliers are given in Table 6. The regression coefficients for the
second expert component are very similar for the three models.
For the first component, the TMoE model retrieved a more heavy
tailed component. Finally, for this data set, we can conclude that
the TMoE provides the best solution.

8.3.2. Temperature anomalies data set
In this experiment, we examine another real-world data set re-

lated to climate change analysis. The NASA GISS Surface Tempera-
ture (GISTEMP) analysis provides a measure of the changing global
surface temperature with monthly resolution for the period since
1880, when a reasonably global distribution of meteorological sta-
tions was established. The GISS analysis is updated monthly, how-
ever the data presented here3 are updated annually as issued from
the Carbon Dioxide Information Analysis Center (CDIAC), which
has served as the primary climate-change data and information
analysis center of the US Department of Energy since 1982. The
data consist of n = 135 yearly measurements of the global an-
nual temperature anomalies (in degrees C) computed using data
from land meteorological stations for the period of 1882–2012.
These data have been analyzed earlier by Hansen, Ruedy, Glascoe,
and Sato (1999); Hansen et al. (2001) and recently by Nguyen and
McLachlan (2016) by using the Laplace mixture of linear experts
(LMoLE).

To apply the proposed t mixture of expert model, we consider
a mixture of two experts as in Nguyen and McLachlan (2016).
This number of components is also the one provided by the model
selection criteria as shown later in Table 8. Indeed, as mentioned
by Hansen et al. (2001), Nguyen and McLachlan (2016) found

3 From Ruedy, Sato, and Lo (2015), http://cdiac.ornl.gov/ftp/trends/temp/
hansen/gl_land.txt.
that the data could be segmented into two periods of global
warming (before 1940 and after 1965), separated by a transition
period where there was a slight global cooling (i.e. 1940–1965).
Documentation of the basic analysismethod is provided byHansen
et al. (1999) and Hansen et al. (2001). We set the response yi(i =

1, . . . , 135) as the temperature anomalies and the covariates xi =

ri = (1, xi)T where xi is the year of the ith observation.
Figs. 12–14 respectively show, for each of the three compared

models, the fitted linear expert components, the corresponding
means and confidence regions computed as plus and minus twice
the estimated (pointwise) standard deviation as presented in
Section 5, and the log-likelihood profiles. One can observe that the
three models are successfully applied on the data set and provide
very similar results.

The values of estimated MoE parameters for the temperature
anomalies data set are given in Table 7. One can see that the
parameters common for the threemodels are quasi-identical, with
a slight difference for the gating network parameters provided
by the LMoE model. This slight difference results in the slight
difference in the shape of the estimated mean curve. The TMoE
provides high degrees of freedom, which tends to approach a
normal distribution. This can also be seen on the log-likelihood
profiles, which converges to almost the same value, meaning that
the hypothesis of normality may be likely for this data set. On the
other hand, the regression coefficients are also similar to those
found by Nguyen and McLachlan (2016) who used LMoE.

We performed amodel selection procedure on the temperature
anomalies data set to choose the best number of MoE components
from values between 1 and 5. Table 8 gives the obtained values
of the used model selection criteria, that is BIC, AIC, and ICL. One
can see that, except the result provided by AIC for the NMoE
model which provides a high number of components, and the one
provided by ICL of the LMoE model, which underestimates the
number of components, all the others results provide evidence for
two components in the data.

9. Conclusion and future work

In this paper, we proposed a new robust non-normal MoE
model, which generalizes the standard normal MoE. It is based on

http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land.txt
http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land.txt
http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land.txt
http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land.txt
http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land.txt
http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land.txt
http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land.txt
http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land.txt
http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land.txt
http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land.txt
http://cdiac.ornl.gov/ftp/trends/temp/hansen/gl_land.txt
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Fig. 12. Fitting the MoLE models to the temperature anomalies data set. Left: NMoE model fit; Middle: LMoE model; Right: TMoE model. The predictor x is the year and the
response y is the temperature anomaly.
Fig. 13. The fitted MoLE models to the temperature anomalies data set. Left: NMoE model; Middle: LMoE; Right: TMoE model. The predictor x is the year and the response
y is the temperature anomaly. The shaded region represents plus and minus twice the estimated (pointwise) standard deviation as presented in Section 5.
Fig. 14. The log-likelihood during the EM iterations when fitting the MoLE models to the temperature anomalies data set. Left: NMoE model; Middle: LMoE; Right: TMoE
model.
the t distribution and named TMoE. The TMoE model is suggested
for data with possibly outliers and heavy tail. We developed an
EM algorithm and ECM extension to infer the proposed model and
described its use in non-linear regression and prediction, as well
as in model-based clustering. The developed model is successfully
applied and validated on simulated and real data sets. The results
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obtained on simulated data confirm the good performance of
the model in terms of density estimation, non-linear regression
function approximation and clustering. In addition, the simulation
results provide evidence of the robustness of the TMoE model to
outliers, compared to the normal alternative model. The proposed
model is also successfully applied to two different real data sets,
including a situation with outliers. The model selection using
information criteria tends to promote using BIC and also ICL against
AIC which performed poorly in the analyzed data. The obtained
results support the benefit of the proposed approach for practical
applications. Furthermore, compared to the LMoEmodel, the TMoE
has been revealed to be more adapted in several situations.

In this paper, we only considered the MoE in their standard
(non-hierarchical) version. One interesting future direction is
therefore to extend the proposed models to the hierarchical MoE
framework (Jordan & Jacobs, 1994). Furthermore, a natural future
extension of this work is to consider the case of MoE for multiple
regression on multivariate data rather than simple regression on
univariate data.
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