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Abstract: The remote monitoring of the railway infrastructure and particularly the switch mechanism is 
of great interest for railway operators. The problem consists in detecting earlier the presence of 
defects in order to alert the concerned maintenance service before a breakdown occurs. For this 
purpose, this paper introduces a new probabilistic-based approach to dynamically modeling the 
evolution of condition measurements acquired during switch operations. It consists of two steps. The 
feature extraction from the electrical power consumption signals which aims at summarizing each 
signal by a low dimensional feature vector. Then, a specific autoregressive model is proposed to 
model the dynamical behavior of the switch mechanism.  
 
1. Introduction 
 
The remote monitoring of the railway infrastructure and particularly the switch mechanism continues to 
be of great interest for railway operators because its operating state directly impacts the availability of 
the overall railway network. The problem consists in detecting earlier the presence of defects 
(electrical, mechanical or civil engineering defects) in order to alert the concerned maintenance 
service before a breakdown occurs. Due to its evolving operating conditions over time, the diagnosis 
of the switch mechanism has to be performed by exploiting successive measurements (or sequences) 
acquired during the working process. In this case, each measurement represents the electrical power 
consumed during a switch operation, as shown in figure 1b. The particular switches considered in this 
paper are driven by an electric motor and equipped with a clamp locking system so-called VCC (see 
figure 1a). 
 

          
(a)                                                                                (b) 

Figure 1. The switch mechanism (a) and a signal showing the electrical power consumed during a 
switch operation without defect (b). 

 
Several approaches based on probabilistic modeling have been proposed to continuously 

monitor complex systems, including the more general approach based on Hidden Markov Model 
(HMM) [8]. Especially regarding the switch mechanism, Diego et al. [ref] considers a dynamical 
correlation analysis including a state-space representation to earlier detect failures. 
 

In this paper, a novel probabilistic-based approach is proposed to dynamically modeling the 
switch operating state over time. This approach is based on the following two steps. First, we 
summarize each curve (corresponding to a switch operation) by a low dimensional feature vector by 
using a specific regression model [7] whose parameters are taken to be a feature vector. In other 
words, this step consists in converting a sequence of curves acquired during successive switch 
operations into a sequence of relevant multidimensional feature vectors. Then, based on the formed 
sequence of multidimensional data, the degradation level of the point mechanism is dynamically 
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assessed by switching between various autoregressive models, the switching mechanism being 
controlled by a stochastic process. The resulting model is called the switching autoregressive model 
with a hidden logistic process abbreviated as ARHLP [2]. 
  

This paper is organized as follows: section 4 briefly recalls the feature extraction methodology 
from the signals of power consumption. Then, section 3 presents the probabilistic dynamical model 
and its parameters estimation technique, and shows how it can be used to predict the state of a switch 
operation. The proposed approach is evaluated in section 4 using data acquired from switch 
operations on the French railway network. 
 
2. The feature extraction from the electrical power signals 
 

The goal of this step is to summarize each signal by a low dimensional feature vector. A 
specific regression model [3], whose parameters are used as feature vector, is adopted. The strength 
of this model is to automatically fit different polynomial sub-regression models to each signal. The 
model parameters are estimated by the maximum likelihood method performed by the so-called 
Expectation Maximization (EM) algorithm [4]. An illustration of the results obtained by applying this 
approach to real switch operations signals is shown on Figure 2.  

 

 
Figure 2. Three signals and their estimated regression models: (left) without defect, (middle) with 

minor lubrification defect and (right) with critical lubrification defect. 
 

After modeling each signal, we obtain a parameter vector of dimension 33 for each signal. This 
parameter vector is then used as the feature vector describing the signal.  
 
3. The dynamic modeling of condition measurements using a switching autoregressive model 
 

The data used in this step are made with the parameters extracted from the previous step. At 
each instant time, the system (the switch mechanism) is assumed to be described by one specific 
autoregressive model supposed to be representative of its operating state and the switching from one 
autoregressive model to another one is controlled by a discrete hidden logistic process. The proposed 
model is described in the next section. 
 
3.1. The switching autoregressive model governed by a hidden logistic process 
 

The ARHLP (dynamical autoregressive model with a hidden logistic process model) is an 
extension of the model presented in [5], which consists of several local multivariate autoregressive 
models and a latent logistic process that allows for switching between these autoregressive models. In 
this context, each autoregressive model is related to an operating state. Another similar autoregressive 
model can be found in [8] where the switching from one state model to another one is controlled by a 
discrete Markov chain. 
 

The observation sequence (y1,...,yT) is assumed to be generated by the following multivariate 
autoregressive model governed by the stochastic process (z1,...,zT):  

 1 , (0, ) ( 2,..., )
t tt z t t t zy y e e t TB    � N .                                        (1) 

The variable zt is a latent discrete random variable which takes its values in the finite set {1...K}. It 
represents the class label of the state generating yt,, 

tzB is the dxd dimensional matrix of the 

autoregressive model coefficients associated with the state zt, 
tz

 is the dxd covariance matrix for the 
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autoregressive model zt, and the variables et are independent random variables in Rd distributed 
according to a standard multivariate Gaussian distribution representing an additive noise. Figure 3 
gives a graphical representation for this model. As it can be seen on this representation, the variable yt 
is influenced by the state zt and the past observation yt-1. 
 
 

 
Figure 3. Graphical model structure for the proposed dynamical model (ARHLP). 

 
In this specific autoregressive model, the stochastic process (z1,...,zT) controls the switching 

from one autoregressive model to another among K models. Thus, unlike the basic autoregressive 
model [5], which assumes constant autoregressive model parameters B and ∑ over time, the 
proposed model is based on time-varying parameters. It is thus able to capture the non-stationary 
behavior of the switch mechanism degradation process. We assume that the underlying hidden 
switching process z = (z1,..., zT) is logistic, that is the hidden variable zt is distributed according to a 
multinomial distribution M(1,π1(yt-1;w),..., πK(yt-1;w)) where the conditional probability of each state k 
(k=1,...,K) is given by: 
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where the d-dimensional parameter wk is associated with the kth logistic component and  
w = (w1,..., wK).  
 

The proposed model is then parameterized by the parameter 
vector 1 1( , ,..., , ,..., )K KBB   w . The parameter estimation is performed by iteratively maximizing 
the likelihood function using a dedicated EM algorithm [4][6]. This EM algorithm is given in details in 
[2]. 
 

Let us notice that, the proposed modeling approach assumes that the sequence of signals 
covers all the states of the switch mechanism. Basing on this assumption, the next two paragraphs 
thus show how the ARHLP model can be used for state identification and prediction. 
 
3.2. State identification 
 

Suppose we have estimated the parameters of the different states from a training sequence 
observed up to time T. The state of a new observation yt (in this case yt is the feature vector extracted 
from the signal acquired at the time step t) can be identified by assigning yt to the state ˆtz  using the 
so-called Maximum A Posteriori (MAP) rule: 
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is the posterior probability of the state k for the new observation yt given the previous observation yt-1 
and the estimated models parameters ̂ . 
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3.3. State prediction 
 
The proposed dynamical model can also be used to forecast switch operations state. The goal 

in this case is to predict the state zt+1 of a future observation yt+1 (t T³ ) not yet observed, given the 
history up to time t. This consists of maximizing with respect to k the prediction probability 
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which is none other than the probability of the logistic process given in Equation (2). 
 
4. Experimental study 
 

This section is devoted to the evaluation of the proposed approach in terms of operating state 
prediction, using a database of real signals issued from the switch operations. 
 
4.1. Experimental setup 
 
We consider a sequence of 120 real switch operation signals classified into three states provided by 
an expert:  

 state k=1: no defect state; 
 state k=2: minor defect state; 
 state k=3: critical defect state. 

The cardinal numbers of those three states are n1=35, n2=40 and n3=45 respectively. Figure 4 shows a 
sequence of signals acquired during successive switch operations. 
 

 
Figure 4. Examples of signals acquired during successive switch operations. 

 
The true operating state sequence is shown in Figure 5. 
 

 
Figure 5. True state sequence of switch operation signals (120 signals). 
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4.2. Obtained results 
 

In this section we report the modeling results obtained by the proposed ARHLP approach for 
the dynamical modeling of the switch operating states. Figure 6 shows the prediction probabilities 
computed according to Equation (8). The state prediction error rate in this case equals 10.92 %. 

 
Figure 6. Prediction probabilities over time obtained with the ARHLP model from the signal sequence. 

 
Figure 7 shows the results in terms of operating state identification, that is the sequence 

obtained by maximizing, at each time step, the posterior state probability computed according to 
Equation (6). The error percentage between the true sequence and the estimated MAP sequence 
equals 9.24. 
 

 
Figure 7. Sequence of estimated operating states obtained with the ARHLP model from the switch 

operation signals 
 
 
5. Conclusion 
 

This paper has introduced a probabilistic-based approach for monitoring the railway switches. 
The proposed model operates on relevant features preliminarily extracted from the power consumption 
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curves acquired during successive switch operations. It consists in switching between various local 
autoregressive models that can be associated with the different operating states of the system, the 
switching between different models being controlled by a discrete hidden stochastic process. The 
model parameters identification is performed by the Expectation Maximization (EM) algorithm which is 
particularly adapted to this specific context, using a sequence of power consumption signals covering 
various operating states. Once the model parameters have been identified using the training 
sequence, the operating states of new operations are identified and predictions are made for future 
operations. The experimental study conducted on real switch operation signals has shown 
encouraging results in terms of operating state identification and prediction. Even if the proposed 
approach can be used for the on-line prediction of operating states, it requires the probabilistic model 
parameters to be learnt off-line using a data sequence covering all the operating states. The main 
prospect of this research will then be to develop a self adaptive approach in which the model 
parameters will be recursively adapted over time. 
 
 
References 
 
[1] G. Celeux, J.C. Nascimento, and J.S. Marques. Learning switching dynamic models for objects 
tracking. Pattern Recognition, 37(9):1841–1853, September 2004. 
 
[2] F. Chamroukhi. Hidden process regression for curve modeling, classification and tracking. Thèse 
de doctorat, Université de Technologie de Compiègne, 2010. 
 
[3] F. Chamroukhi, A. Samé, G. Govaert, and P. Aknin. Time series modeling by a regression approach 
based on a latent process. Neural Networks, 22(5-6):593–602, 2009. 
 
[4] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM 
algorithm. Journal of the Royal Statistical Society, B, 39(1):1–38, 1977. 
 
[5] L. Harrison, W. D. Penny, and K. Friston. Multivariate autoregressive modeling of fMRI time series. 
Neuroimage, 19(4):1477–1491, August 2003. 
 
[6] G. J. McLachlan and T. Krishnan. The EM algorithm and extensions. New York: Wiley, 1997. 
 
[7] P. Smyth. Hidden markov models for fault detection in dynamic systems. Pattern Recognition, 
27(1):149–164, 1994. 
 
[8] C.S. Wong and W.K. Li. On a logistic mixture autoregressive model. Biometrika, 88(3):833–846, 
2001. 


