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Abstract Mixture model-based clustering, usually applied to multidimensional
data, has become a popular approach in many data analysis problems, both for its
good statistical properties and for the simplicity of implementation of the Expecta-
tion–Maximization (EM) algorithm. Within the context of a railway application, this
paper introduces a novel mixture model for dealing with time series that are subject
to changes in regime. The proposed approach, called ClustSeg, consists in modeling
each cluster by a regression model in which the polynomial coefficients vary accord-
ing to a discrete hidden process. In particular, this approach makes use of logistic
functions to model the (smooth or abrupt) transitions between regimes. The model
parameters are estimated by the maximum likelihood method solved by an EM algo-
rithm. This approach can also be regarded as a clustering approach which operates
by finding groups of time series having common changes in regime. In addition to
providing a time series partition, it therefore provides a time series segmentation. The
problem of selecting the optimal numbers of clusters and segments is solved by means
of the Bayesian Information Criterion. The ClustSeg approach is shown to be efficient
using a variety of simulated time series and real-world time series of electrical power
consumption from rail switching operations.
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1 Introduction

The application which gave rise to this study concerns the diagnosis of railway
switches, that is to say the mechanisms which enable trains to change tracks at junc-
tions. One preliminary task in the diagnostic process is identifying groups of switching
operations that show similar dynamic behaviour, and this is accomplished by perform-
ing clustering on the time series of electrical power consumption, acquired during
various switching operations. This kind of data is referred to in other contexts as lon-
gitudinal data (Chiou and Li 2007), signals, curves (Gaffney and Smyth 1999; Shi
and Wang 2008), or functional data (Ramsay and Silverman 1997). In particular, the
power consumption time series studied in this paper are subject to various shifts (see
Fig. 10) as a result of successive mechanical movements of the physical components
associated with the switch mechanism. In this context, the time period between two
successive shifting times is called a regime.

The approach adopted in this paper is mixture model-based clustering (Banfield
and Raftery 1993; Celeux and Govaert 1995), which has successfully been applied
in numerous domains (McLachlan and Peel 2000), and which provides, by means
of the Expectation–Maximization algorithm (Dempster et al. 1977; McLachlan and
Krishnan 2008), an efficient implementation framework. Typical extensions of mixture
models for time series include regression mixture models (Gaffney and Smyth 1999)
and random effect regression mixture models (Gaffney and Smyth 2003; James and
Sugar 2003; Ng et al. 2006; Liu and Yang 2009). More recently, Coke and Tsao (2010)
proposed a specific random effect mixture model for electrical load series clustering.
These approaches are based on a projection of the original time series into a space with
fewer dimensions, defined by polynomial or spline basis functions. Other approaches
that combine mixtures of autoregressive models and the Expectation–Maximization
algorithm (Wong and Li 2000), or Autoregressive Moving Average (ARMA) models
and the Expectation–Maximization algorithm (Xiong and Yeung 2004) have also been
proposed. Although these approaches can be seen as an efficient way of classifying
time series, all of them use only one global model (regressive or autoregressive) within
each cluster.

Within the particular context of time series with changes in regime, a specific regres-
sion model has been proposed in Chamroukhi et al. (2010) to model time series with
changes in regime. The model in question is a regression model in which the poly-
nomial coefficients may vary according to a discrete hidden process, and which uses
logistic functions to model the (smooth or abrupt) transitions between regimes. How-
ever, the latter model did not deal with time series clustering but only with the modeling
of a set of homogeneous time series with common changes in regime. Therefore, this
paper extends this concept to a more general model, named ClustSeg, applied to the
clustering and segmentation of heterogeneous time series with changes in regime.

This paper is organized as follows. We first present a brief review of the regression
mixture model for time series clustering. Then, we detail the ClustSeg model and its
parameters estimation via the Expectation–Maximization algorithm (Dempster et al.
1977; McLachlan and Krishnan 2008). Based on simulated examples and real-world
time series from an application in the railway sector, an experimental study illustrates
the performance of the proposed approach.
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Model-based clustering and segmentation of time series

The n time series to be classified will be denoted as (x1, . . . , xn), where each
series xi = (xi1, . . . , xim) consists of m real values observed over a deterministic
prespecified time grid t = (t1, . . . , tm), with t1 < t2 < · · · < tm . They are sup-
posed to be the realized values of n independent and identically distributed random
variables X1, . . . , Xn , where Xi = (Xi1, . . . , Xim). The unobserved class labels cor-
responding to the time series (x1, . . . , xn), which are denoted as (z1, . . . , zn), with
zi ∈ {1, . . . , K }, are taken to constitute instances of n independent random variables
(Z1, . . . , Zn) with parent variable Z .

2 Regression mixture model for time series clustering

This section briefly recalls the regression mixture model called here the
RegMix model, as formulated by Gaffney and Smyth (1999), in the context of times
series clustering.

2.1 Definition of the regression mixture model

Unlike standard vector-based mixture models, the density of each component of the
regression mixture is represented by a polynomial prototype series parameterized by
a vector of regression coefficients and a noise variance. These prototype series or
functions represent the class conditional expectations of variables Xi . The regres-
sion mixture model therefore assumes that each series Xi , given the time grid t , is
distributed according the density

f (xi |t; θ) =
K∑

k=1

πk Nm(xi ; Tβk, σ
2
k I), (1)

where θ = (π1, . . . , πK ,β1, . . . ,βK , σ 2
1 , . . . , σ 2

K ) is the complete parameter vector,
the πk are the proportions of the mixture satisfying 0 ≤ πk ≤ 1 ∀k and

∑K
k=1 πk = 1,

βk ∈ Rp+1 and σ 2
k > 0 are respectively the coefficient vector of the kth regression

model and the associated noise variance. The matrix T = (Tju) is an m ×(p+1) Van-
dermonde matrix verifying Tju = tu−1

j for all 1 ≤ j ≤ m and 1 ≤ u ≤ (p + 1), and
Nm(·;μ,�) is the Gaussian density in Rm with mean vector μ and covariance matrix
�. This corresponds to the class-specific polynomial prototype functions gk(t) =∑p+1

u=1 βkutu−1. Figure 1 gives an illustration of time series generated according to the
mixture model defined by Eq. (1).

2.2 Fitting the model

Assuming that the observed time series x1, . . . , xn are independent, the parameter
vector θ is estimated by maximizing the log-likelihood

L(θ) = log
n∏

i=1

f (xi |t; θ) =
n∑

i=1

log
K∑

k=1

πkNm(xi ; Tβk, σ
2
k I) (2)

via the Expectation–Maximization algorithm initiated by Dempster et al. (1977).
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Fig. 1 Example of 40 time
series simulated according to a
polynomial regression mixture
model, with K = 2 and p = 4

Once the parameters have been estimated, a time series partition is obtained by
assigning each series xi to the cluster having the highest posterior probability

P(Zi = k|t, xi ; θ) = πkNm(xi ; Tβk, σ
2
k I)

∑K
h=1 πhNm(xi ; Tβh, σ 2

h I)
· (3)

3 Clustering time series with changes in regime

3.1 The global mixture model

As with the standard regression mixture model, the mixture model introduced for
clustering time series with changes in regime assumes that, given the time grid t , the
variables Xi are independently generated according to the global mixture model

f (xi |t; θ) =
K∑

k=1

πk fk(xi |t; θk), (4)

where θ = (π1, . . . , πK , θ1, . . . , θ K ), π1, . . . , πK denote the proportions of the mix-
ture, and θk the parameters of the different component densities fk . The main differ-
ence between the model proposed here and the RegMix model (Gaffney and Smyth
1999) lies in the definition of the component densities fk , described in the following
section.

3.2 Structure of the mixture components

We assume that each time series Xi = (Xi1, . . . , Xim) which originates from the kth
mixture component fk is generated as follows. At each time point t j , the variable
Xi j follows one of L (class-specific) pth order polynomial regression models (see
Sect. 2.1). In this way, the individual variables Xi j of a time series Xi may switch
from one regression model to another one in the course of time and the switching
times might be different for different Xi .

The assignment of the Xi j ’s to the different (sub) regression models is specified by
a hidden random process denoted by Wi = (Wi1, . . . , Wim), where Wi j ∈ {1, . . . , L}
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Fig. 2 Graphical representation of the variables involved in the regression mixture model for clustering
and segmentation; the nodes in gray circles represent the observed variables

Fig. 3 Dynamical behavior of the logistic probabilities κk� as a function of the parameters αk�1 and
αk�0/αk�1

is the label of the polynomial regression model that control the time series Xi at time
t j . Thus, given the class label Zi = k and the assignment labels in Wi , the individual
observations Xi j of a series Xi are given by:

Xi j =
L∑

�=1

Wi j�(T′
jβk� + σk�εi j ) for j = 1, . . . , m, (5)

where εi j ∼ N1(0, 1) is a random noise and Wi j� = 1 if Wi j = � and 0 otherwise.
The parameters σk� > 0 and βk� ∈ Rp+1 are respectively the noise standard deviation
and the coefficient vector of the �th regression model of the kth cluster. T′

j denotes the

transpose of the vector T j = (1, t j , . . . , t p
j )′. Since the model defined by Eqs. (4) and

(5) is related to time series clustering and segmentation, we shall call it “ClustSeg”.
The graphical model associated to the ClustSeg model is displayed in Fig. 2.

The random variables (Wi1, . . . , Wim) associated to the regression model labels of
the time series Xi are assumed to be generated according to the multinomial distribu-
tion M(1, κk1(t j ;αk), . . . , κkL(t j ;αk)), where

κk�(t j ;αk) = P(Wi j = �|Zi = k)

= exp(αk�1t j + αk�0)∑L
h=1 exp(αkh1t j + αkh0)

for all j, �, k (6)

is a logistic function with parameter vector αk = (αk1, . . . , αkL) and
αk� = (αk�0,αk�1). As shown in Fig. 3, the logistic function defined in this way
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Fig. 4 (Left) example of 50 time series generated according to the ClustSeg model with K = 2, L = 3
and p = 2; (Middle top and right top) Classes with their associated polynomials; (Middle bottom and right
bottom) Corresponding logistic probabilities

controls, through the parameters αk�0
αk�1

and αk�1, the transition time points and the type
of transition between the different polynomial regimes involved in the generation pro-
cess of the time series. Thus, given Zi = k, the m individual variables Xi j of a series
Xi at times t1, . . . , t j are independently distributed according to the mixture model
given by the density

p(xi j |t j ; θk) =
L∑

�=1

κk�(t j ;αk)N1(xi j ;βT
k�T j , σ

2
k�). (7)

The class specific density fk can thus be written as

fk(xi |t; θk) =
m∏

j=1

L∑

�=1

κk�(t j ;αk)N1(xi j ;βT
k�T j , σ

2
k�). (8)

Figure 4 shows an example of 50 time series generated according to the ClustSeg
model.

3.3 A combined clustering-segmentation model

Let Ek� be the subset of [t1; tm] defined by

Ek� =
{

t ∈ [t1; tm] | κk�(t;αk) = max
1≤h≤L

κkh(t;αk)

}
. (9)

It can be easily verified that, for each class k, (Ek1, . . . , EkL) is a partition of the set
of times [t1; tm]. Moreover, it can be proved that Ek� is convex as the intersection of
convex parts of [t1; tm] (see Appendix A). As some of the subsets Ek� can be empty,
the proposed model leads to a cluster-specific segmentation Ek = (Ek1, . . . , EkL ′)
(L ′ ≤ L) of the times [t1; tm], into contiguous parts.

3.4 Parameter estimation via the EM algorithm

The parameters of the proposed model are estimated by maximizing the log-likelihood
defined by
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L(θ) =
n∑

i=1

log f (xi |t; θ)

=
n∑

i=1

log
K∑

k=1

πk

⎛

⎝
m∏

j=1

L∑

�=1

κk�(t j ;αk)N1

(
xi j ;β ′

k�T j , σ
2
k�

)
⎞

⎠ . (10)

The Expectation–Maximization algorithm (Dempster et al. 1977) is used for the
maximization of this log-likelihood, a problem which cannot be solved analytically. Let
us recall that the EM algorithm requires a complete data specification, whose log-like-
lihood can be maximized more easily than the observed marginal data log-likelihood.
Here, the “complete data” are obtained by joining to each series xi its latent class
membership label zi and its unobservable assignment indicator wi = (wi1, . . . , wim)

to the different sub-regression models. Using the binary coding of zi and wi j ,

zik =
{

1 if zi = k
0 otherwise

and wi j� =
{

1 if wi j = �

0 otherwise,

the complete data log-likelihood can be written as

Lc(θ) =
n∑

i=1

log p(xi , zi ,wi |t; θ) =
n∑

i=1

K∑

k=1

zik log πk

+
n∑

i=1

m∑

j=1

K∑

k=1

L∑

�=1

zikwi j� log
(
κk�(t j ;αk)N1

(
xi j ;β ′

k�T j , σ
2
k�

))
. (11)

Given an initial value θ (0) of the parameter vector, the EM algorithm alternates the
following two steps until convergence.

E-Step (Expectation)

This step consists in evaluating the expectation of the complete data log-likelihood
conditionally on the observed data and the current parameter vector θ (q), q denoting
the current iteration:

Q(θ , θ (q)) = E[Lc(θ)|t, x1, . . . , xn; θ (q)] =
n∑

i=1

K∑

k=1

r (q)
ik log πk

+
n∑

i=1

m∑

j=1

K∑

k=1

L∑

�=1

λ
(q)
i jk� log(κk�(t j ;αk)N1(xi j ;β ′

k�T j , σ
2
k�)), (12)

where

r (q)
ik = E[zik |t, xi ; θ (q)] = π

(q)
k fk(xi |t; θ

(q)
k )

∑K
h=1 π

(q)
h fh(xi |t; θ

(q)
h )

(13)
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is the posterior probability that time series xi originates from cluster k, and

λ
(q)
i jk� = E[zik wi j�|t, xi ; θ (q)]

= r (q)
ik × κk�(t j ;α

(q)
k )N1(xi j ;β

(q)′
k� T j , (σ

(q)
k� )2)

∑L
h=1 κkh(t j ;α

(q)
k )N1(xi j ;β

(q)′
kh T j , (σ

(q)
kh )2)

(14)

is the posterior probability that the j th value of xi , i.e., the observation xi j at time t j ,
originates from the �th sub-regression model of cluster k.

M-Step (Maximization)

This step consists in computing the parameter vector θ (q+1) that maximizes the quan-
tity Q(θ , θ (q)) with respect to θ . For our purposes this quantity can be written as

Q(θ , θ (q)) = Q1((πk)) + Q2((αk)) + Q3((βk�, σ
2
k�)),

where

Q1((πk)) =
n∑

i=1

K∑

k=1

r (q)
ik log πk, (15)

Q2((αk)) =
n∑

i=1

m∑

j=1

K∑

k=1

L∑

�=1

λ
(q)
i jk� log(κk�(t j ;αk)), (16)

Q3((βk�, σ
2
k�)) =

n∑

i=1

m∑

j=1

K∑

k=1

L∑

�=1

λ
(q)
i jk� log(N1(xi j ;β ′

k�T j , σ
2
k�)). (17)

Q can thus be maximized by separately maximizing the quantities Q1 w.r.t.
(π1, . . . , πK ), Q2 w.r.t. (α1, . . . ,αK ) and Q3 w.r.t. ((βk�, σ

2
k�)k,�). As in the clas-

sical Gaussian mixture model, it can easily be shown that the proportions πk that
maximize Q1 under the constraint

∑K
k=1 πk = 1 are given by

π
(q+1)
k =

∑n
i=1 r (q)

ik

n
· (18)

Q2 can be maximized with respect to the αk by separately solving K weighted
logistic regression problems:

α
(q+1)
k = arg max

αk

n∑

i=1

m∑

j=1

L∑

�=1

λ
(q)
i jk� log(κk�(t j ;αk)) (19)

through the well known Iteratively Reweighted Least Squares (IRLS) algorithm (Green
1984; Chamroukhi et al. 2010). Let us recall that the IRLS algorithm, which is generally

123



Model-based clustering and segmentation of time series

used to estimate the parameters of a logistic regression model, is equivalent to the
following Newton Raphson algorithm (Green 1984; Chamroukhi et al. 2010):

α
(v+1)
k = α

(v)
k −

[
∂2 Q2k

∂αk∂αT
k

]−1

αk=α
(v)
k

[
∂ Q2k

∂αk

]

αk=α
(v)
k

, for v = 0, 1, . . . (20)

where Q2k = ∑n
i=1

∑m
j=1

∑L
�=1 λ

(q)
i jk� log κk�(t j ;αk).

Maximizing Q3 with respect to (βk�)k,� consists in analytically solving K × L
weighted least-squares problems. It can be shown that

β
(q+1)
k� =

[
T′

(
n∑

i=1

�
(q)
ik�

)
T

]−1 [
T

(
n∑

i=1

�
(q)
ik�xi

)]
∀k, �, (21)

where �
(q)
ik� is the m × m diagonal matrix whose diagonal elements are

{λ(q)
i jk� ; j = 1, . . . , m}. The maximization of Q3 with respect to (σ 2

k�)k,� gives

(σ
(q+1)
k� )2 =

∑n
i=1

∥∥∥∥
√

�
(q)
ik�(xi − Tβ

(q+1)
k� )

∥∥∥∥
2

∑n
i=1 trace(�(q)

ik�)
∀k, �, (22)

where
√

�
(q)
ik� is the m × m diagonal matrix with diagonal elements

√
λ

(q)
i jk� for

j = 1, . . . , m and ‖ · ‖ is the norm corresponding to the Euclidean distance.

M-step for three parsimonious clustering-segmentation models

Common segmentation of time axis for all clusters In certain situations, the seg-
mentation defined by the αk (k = 1, . . . , K ) may be constrained to be common for
each cluster, that is αk = α ∀k. In that case, the quantity Q2 to be maximized can be
rewritten as:

Q2(α) =
n∑

i=1

m∑

j=1

L∑

�=1

λ
(q)
i j ·� log(κ�(t j ;α)), (23)

where λ
(q)
i j ·� = ∑K

k=1 λ
(q)
i jk�. The IRLS algorithm can therefore be used to compute the

parameter α(q+1), in the same way as for the unconstrained situation.

Common variance for regression models from the same cluster In other situations,
it may be useful to constrain the regression model variances to be identical within a
same cluster. In that case, σ 2

k� = σ 2
k ∀�. The updating formula for the variance can

thus be written as:

(σ
(q+1)
k )2 =

∑n
i=1

∑L
�=1

∥∥∥∥
√

�
(q)
ik�

(
xi − Tβ

(q+1)
k�

)∥∥∥∥
2

∑n
i=1

∑L
�=1 trace(�(q)

ik�)
· (24)
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Common variance for all regression models If the model variances are constrained to
be identical for all regression models, we have σ 2

k� = σ 2 ∀k, �. The updating formula
for the variance takes the form:

(
σ (q+1)

)2 =
∑n

i=1
∑K

k=1
∑L

�=1

∥∥∥∥
√

�
(q)
ik�(xi − Tβ

(q+1)
k� )

∥∥∥∥
2

n × m
· (25)

3.5 Complexity analysis of the clustering-segmentation EM algorithm

The algorithmic complexity of the proposed EM algorithm depends on the compu-
tation costs of the E and M steps. The complexity of the E step is O(K Lnmp),
which mainly comprises the calculation of the probabilities κk�(t j ;αk) and densities
N1(xi j ;β ′

k�T j , σ
2
k�), for all k, �, i, j . For each k and �, the regression coefficients

update equation (21) requires the computation and inversion of a (p + 1) × (p + 1)

matrix which can be done in O(nmp3), and the variance update equation (22) is com-
puted in O(nmp). Each iteration of the IRLS algorithm requires a 2(L −1)×2(L −1)

Hessian matrix to be computed and inverted, which is done in O(L3nm). From the
computation costs of the regression coefficients, the variances and the logistic func-
tions coefficients, it can be deduced that the M step has complexity O(K Lnmp3).
Consequently, the computational complexity of the proposed EM algorithm is
O(IE M II RL S K L3nmp3), where IE M is the number of iteration of the EM algorithm
and II RL S is the maximum number of iterations of the inner IRLS loops. The parsi-
monious models described above, while requiring less calculations than the general
model, have their complexity also limited by O(IE M II RL S K L3nmp3).

As a particular case, it can be easily verified that the complexity of the RegMix EM
algorithm, described in Sect. 2, is O(IE M K nmp3).

Compared to other clustering and segmentation algorithms such as the k-means
type algorithm based on piecewise polynomial regression (Hébrail et al. 2010), whose
complexity is O(IK M K Lnm2 p3) where IK M is the number of iterations of the algo-
rithm, our EM algorithm is computationally attractive for large values of m and small
values of L .

3.6 Clustering, approximation and segmentation of the time series

From the parameters estimated by the EM algorithm, a partition of the n time series
into K clusters can easily be obtained by applying the maximum a posteriori (MAP)
rule to the expected membership indicator Zik , that is the values r̂ik = E[Zik |t, xi ; θ̂ ],
where θ̂ is the parameter estimated by the EM algorithm:

ẑi = arg max
k

r̂ik for i = 1, . . . , n. (26)

The class-specific prototype function can be approximated by the estimate
ĉk = (̂ck1, . . . , ĉkm), with

ĉk j = E
[
xi j |t j , zi = k; θ̂

]
=

L∑

�=1

κk�(t j ; α̂k)T′
j β̂k�. (27)
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Moreover, a segmentation Ek = (Ek�)�=1,...,L ′ of the time series originating from
the kth cluster can be derived from the estimated parameters by computing Ek� as
defined in Eq. (9).

3.7 Assessing the number of clusters, segments and the regression order

In the context of mixture models and the EM algorithm, the natural criterion for model
selection is the Bayesian Information Criterion (BIC) (Schwarz 1978). Unlike for the
classical regression mixture model, three parameters need to be tuned: the number of
clusters K , the number of segments L and the degree p of the polynomials. The BIC
criterion, in this case, can be defined by:

B I C(K , L , p) = L(̂θ) − ν(K , L , p)

2
log(n), (28)

where θ̂ is the parameter vector estimated by the EM algorithm, and ν(K , L , p) is the
number of free parameters of the model. In the ClustSeg model, the number of free
parameters

ν(K , L , p) = (K − 1) + 2 K (L − 1) + L K (p + 1) + L K (29)

comprizes the mixture proportions, the logistic functions parameters, the polynomial
coefficients and the variances.

From a practical point of view, the maximum values Kmax , Lmax and pmax have
first to be specified. Then, the EM algorithm is run for K ∈ {1, . . . , Kmax }, L ∈
{1, . . . , Lmax } and p ∈ {1, . . . , pmax }, and the BIC criterion is computed. The set
(K , L , p) with the highest value of BIC is taken to be right solution. In contrast
to more classical mixture model situations where only Kmax computations of BIC
are required to estimate the number of classes of a data set, our situation requires
Kmax ×Lmax × pmax computations of BIC to estimate the number of classes, segments
and polynomial order of a data set, which can be computationally more expensive.

4 Experimental study

This section is devoted to an evaluation of the clustering accuracy of the proposed EM
algorithm for time series and segmentation, carried out using simulated time series
and real-world time series from a railway application. Results yielded by the ClustSeg
model are compared with those provided by the RegMix model described in Sect. 2,
and the k-means type clustering and segmentation algorithm based on polynomial
piecewise regression (Hébrail et al. 2010), called PWR in the following. Starting from
a randomly initialized partition G = (G1, . . . , G K ) of the n time series, the PWR
algorithm iteratively maximizes the criterion

C(G, I,β) =
K∑

k=1

L∑

�=1

∑

i∈Gk

∑

j∈Ik�

(xi j − T′
jβk�)

2, (30)
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where I = (Ik)k=1,...,K represents K segmentations of {t1, . . . , tn} into L intervals and
Ik = (Ik�)�=1,...,L is the segmentation corresponding to the kth cluster, by alternating
the following two steps until the partition stabilizes:

(a) estimate an L-segment piecewise polynomial function for each cluster, using a
dynamic programming procedure;

(b) assign each time series xi to the closest piecewise polynomial function in the
sense of the L2 distance.

To measure the clustering accuracy, two criteria were used: the percentage of mis-
classifications between the true partition of the time series and the estimated partition,
and the intra-cluster inertia defined by

K∑

k=1

n∑

i=1

ẑik‖xi − ĉk‖2, (31)

where (̂zik) and ĉk = (̂ck1, . . . , ĉkm) represent, respectively, the binary partition matrix
and the kth prototype series estimated by each of the three compared algorithms, with:

– ĉk j = ∑L
�=1 κk�(t j ; α̂k)T′

j β̂k� for the ClustSeg model,

– ĉk j = T′
j β̂k for the RegMix model,

– ĉk j = ∑L
�=1 1 Îk�

(t j )T′
j β̂k� for the PWR algorithm, where 1Ik�

(t) denotes the
indicator function of the segment Ik�.

4.1 Experiments using simulated data

4.1.1 Simulation protocol and algorithms tuning

Quite generally, we simulate n time series with m discrete time points
t1 = 1, . . . , tm = m according to a mixture of K classes whose prototypes func-
tions are nonlinear. In the ClustSeg and PWR approaches, the polynomial coefficients
and variances are initialized as follows: K series are randomly selected and seg-
mented into L segments of equal length; the initial polynomial regression parameters
are derived from a pth order regression on each segment. In the initial iteration of
the EM algorithm, the logistic regression parameters are initialized to zero. The initial
polynomial coefficients and variances of the regression mixture approach are obtained
by performing a pth-order regression on K randomly drawn series. The initial pro-
portions of the latent classes are set to πk = 1/K for all algorithms. Each algorithm
starts with 20 different initializations of (θ1, . . . , θ K ) and the solution with the highest
log-likelihood is selected.

4.1.2 Comparisons with the RegMix and PWR approaches in terms of clustering
accuracy

A first set of experiments was performed in order to compare the relative performances
of the ClustSeg, RegMix and PWR approaches. Each data set, consisting of n = 50
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Table 1 Prototype series of mixture 1

Cluster Prototype series

k = 1 c1 j = 20 sin(0.12π j) exp(−0.07 j)

k = 2 c2 j = 11.1 × 1[1;8[( j) − 4.3 × 1[8;18[( j) + 3.8 × 1[18;24[( j) − 0.3 × 1[24;50]( j)

Fig. 5 Example of n = 50 series simulated according to mixture 1 with σ = 2 (left) and series corre-
sponding to the two clusters, with their prototype curve (middle and right)

time series of length m = 50, was simulated according to a mixture of K = 2 classes
with equal proportions (π1 = π2 = 1/2). As described in Table 1, the first class proto-
type function is a nonlinear function and the second one is a piecewise constant func-
tion. Within each class, the time series were generated by adding a centered Gaussian
noise with variance σ 2 to a prototype series. Values of the noise variance were chosen
constant within each of the time series data sets. Figure 5 provides an illustration of
time series simulated according to this model, which will be called mixture 1 in the
following. For each noise standard deviation σ in the set {0.5, 1, 1.5, 2, 2.5, 3, 3.5},
25 different samples of 50 time series were generated and the results (misclassification
rates and intra-cluster inertia) were averaged over these 25 random samples.

Since the goal of this set of experiments was to evaluate the ClustSeg approach in
terms of estimation accuracy, the number of clusters has been set to K = 2 in the three
compared algorithms. For each simulated data set, as the true number of segments and
polynomial order are unknown, the ClustSeg EM algorithm is run for L = 1, . . . , 7
and p = 1, . . . , 7 (i.e. Lmax = 7 and pmax = 7), and only the solution providing the
highest BIC value is retained. The same strategy is applied for the RegMix EM algo-
rithm by simply varying the polynomial order p from 1 to pmax = 13, as described
in Sect. 3.7.

The model underlying the PWR approach can be viewed as a Gaussian mixture with
hard cluster assignment, uniform cluster prior and identical variances, where the class
prototype functions are piecewise polynomial functions. Since the likelihood in this
situation is L = − 1

2 C up to a constant, the number of segments and the polynomial
order of this approach were selected by maximizing the following BIC-like criterion :

B I C(K , L , p) = −C

2
− νK ,L ,p

2
log(n), (32)

where νK ,L ,p = K (L−1)+K L(p+1) is the number of free parameters of the model,
including the polynomial coefficients βk� and the boundaries of the segments Ik�.
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Fig. 6 (Left) Misclassification rate and (right) Intra-cluster inertia in relation to the noise standard deviation,
obtained with the ClustSeg, PWR and RegMix approaches

Figure 6 shows the misclassification rate and the intra-cluster inertia obtained with
the ClustSeg, RegMix and PWR approaches as a function of the noise variance. The
intra-cluster inertia and misclassification percentages obtained by the three approaches
naturally increases with the variance level, but the ClustSeg approach performs better
than its competitor. Nevertheless, the classification results provided by the ClustSeg
and PWR approach are very close to each other. Their difference in terms of intra-
cluster inertia are more distinct, particularly for noise standard deviations greater than
2. The misclassification rate of the RegMix approach increases faster than that of
the ClusSeg and PWR approaches, which can be attributed to the fact that a single
polynomial cannot accurately model the simulated classes.

An example of the clustering results obtained with the ClustSeg approach is dis-
played in Fig. 7. It will be observed that the two classes obtained are well represented
by four polynomials of order 3 weighted by logistic functions.

4.1.3 Comparisons of the RegMix and PWR approaches in terms of computational
speed

To illustrate the algorithmic complexity of the ClustSeg, RegMix and PWR approaches
described in Sect. 3.5, this second set of experiments shows how their execution time
varies when the length m of the time series increases. For this purpose, we record their
CPU time for m varying in the set {25, 50, 100, 200, 500, 1,000} by using a 2 GHz
Pentium Dual-Core. For each value of m, 25 data sets of n = 50 time series were
generated according to mixture 1, by varying the time sampling frequency. Figure 8
displays the CPU times (averaged over the 25 data sets) for the ClustSeg, RegMix and
PWR approaches with respect to the time series length m.

Not surprisingly, the RegMix approach is found to be computationally less expen-
sive than its competitors. It can also be observed that the CPU times of the three
compared approaches are almost the same until m = 200. For large values of m
(m ≥ 300), the CPU times of the ClustSeg approach are smaller than those provided
by the PWR approach which increases considerably with m. In particular, for m = 500,
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Fig. 7 Clustering results provided by the ClustSeg model applied with the BIC estimates L = 4 and p = 3:
(top) Clusters with their estimated polynomials, (middle) logistic probabilities and (bottom) estimated pro-
totype series

Fig. 8 CPU time (in s) obtained with the ClustSeg, RegMix and PWR approaches in relation to the time
series’ length m

ClustSeg is about 7 time slower than PWR. These experiments clearly show that the
ClustSeg approach, while being computationally more expensive than the RegMix
approach, is more efficient than the clustering-segmentation PWR approach for large
values of m and small values of L .
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Table 2 Prototype series of mixture 2

Cluster Prototype functions

k = 1 c1 j = 101[1;20[( j) + (0.5 j)1[20;30[( j) + (−0.75 j + 37.5)1[30;50[( j)
+(0.8 j − 40)1[50;65[( j) + 121[65;75]( j)

k = 2 c2 j = 81[1;20[( j) + 121[20;35[( j) + (−0.47 j + 28.3)1[35;50[( j)
+51[50;65[( j) + 141[65;75]( j)

Fig. 9 Example of n = 50 time series simulated according to mixture 2 (left) and series corresponding to
the two clusters, with their prototype function (center and right)

4.1.4 Selecting the number of clusters and segments

Our third set of experiments is designed to the evaluation of the ClustSeg approach in
terms of identifying the correct number of clusters and segments. Simulations were
performed to compare the number of clusters and segments estimated for the ClustSeg
approach, to those estimated for the PWR approach based on hard transitions between
polynomials. For each simulated sample, the number of clusters was computed by
running the algorithms with K varying from 1 to Kmax = 3, L varying from 1 to
Lmax = 4, and p varying from 0 to pmax = 3, and then selecting the triplet (K , L , p)

which maximizes the BIC criterion defined by Eq. (28) (for the ClustSeg approach)
or the BIC-like criterion defined by Eq. (32) (for the PWR approach). The process is
repeated for 100 different random samples, each sample consisting of n = 50 time
series of length m = 75 generated according to a mixture of K = 2 classes with L = 4
segments, whose prototype series are given in Table 2. The noise standard deviation
was set to σ = 1 for all the data sets. In the following, this mixture will be called
mixture 2. Figure 9 shows an example of times series simulated according to mixture 2.

The selection rate for each triplet (K , L , p) over the 100 random samples is dis-
played in Table 3 as a percentage. Not surprisingly, we observe that the selection rates
associated to K = 1 and to the numbers of segments L = 1 and L = 2, which
are not adapted to the time series simulated according to mixture 2, are equal zero.
The models with the highest percentages of selection (89% and 75%) are those with
(K , L , p) = (2, 4, 3) for the ClustSeg approach and (K , L , p) = (3, 4, 3) for the
MixReg Approach. Although the polynomial order is slightly overestimated, the true
numbers of classes and segments are well estimated by the ClustSeg approach. It can
be seen that the number of classes is overestimated by the PWR approach: the number
of clusters and segments is correctly detected for only 11% of the simulated data sets.
These results are encouraging in terms of model selection.
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Table 3 Percentage of selecting (K , L , p)

ClustSeg PWR

p = 0 p = 1 p = 2 p = 3 p = 0 p = 1 p = 2 p = 3

K = 1

L = 1 0 0 0 0 0 0 0 0

L = 2 0 0 0 0 0 0 0 0

L = 3 0 0 0 0 0 0 0 0

L = 4 0 0 0 0 0 0 0 0

K = 2

L = 1 0 0 0 0 0 0 0 0

L = 2 0 0 0 0 0 0 0 0

L = 3 0 0 0 0 0 0 0 0

L = 4 0 0 11 89 0 0 0 11

K = 3

L = 1 0 0 0 0 0 0 0 0

L = 2 0 0 0 0 0 0 0 0

L = 3 0 0 0 0 0 0 0 1

L = 4 0 0 0 0 0 3 10 75

4.2 Experiments using real world data

As mentioned in the introduction, the main motivation behind this study was diag-
nosing problems in the rail switches that allow trains to change tracks at junctions.
A switching operation consists in moving laterally some linked tapering rails (also
known as points) into one of two positions. This operation is generally operated by an
electrical motor.

An important preliminary task in the diagnostic process is the automatic identifica-
tion of groups of switching operations that have similar characteristics, by analyzing
time series of electrical power consumption acquired during switching operations.

The specificity of the time series to be analyzed in this context is that they are sub-
ject to various changes in regime as a result of five successive mechanical movements
of the physical components associated with the switch mechanism:

– the starting phase: period between the activation of the motor and the starting of
the switch operation itself,

– the points unlocking: phase where the switch points are unlocked, that makes them
ready for the translation,

– the points translation: phase corresponding to the translation of the points,
– the points locking: phase where the switch points are locked;
– the friction phase: phase where an additional effort is applied to ensure the locking.

We accomplished this clustering task by using our EM algorithm, designed for estimat-
ing the parameters of a mixture of hidden process regression models. We compared the
proposed EM algorithm to the regression mixture EM algorithm described in Sect. 3.4,
on a data set of n = 140 time series (see Fig. 10). This data set is composed of four
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Fig. 10 Electrical power
consumption time series
acquired during n = 140 switch
operations and subject to
changes in regime

Table 4 BIC criterion (divided by 105) obtained with the ClustSeg, PWR and RegMix approaches for p
varying from 1 to 6, with K = 4 and L = 5

p 1 2 3 4 5 6

ClustSeg −3.104 −3.009 −2.992 −2.994 −3.029 −3.132

PWR −3.288 −3.123 −3.061 −3.104 −3.106 −3.734

p 1 2 3 4 5 6

RegMix −4.057 −3.982 −3.921 −3.863 −3.641 −3.636

p 7 8 9 10 11

RegMix −3.608 −3.480 −3.466 −3.474 −3.391

Table 5 Misclassification
percentage and intra-cluster
inertia obtained for the ClustSeg,
PWR and RegMix approaches

ClustSeg PWR RegMix

Misclassification (%) 9.28 10.72 11.42
Intra-cluster inertia 1.1566 × 107 1.3587 × 107 2.6583 × 107

classes identified by an expert: a defect-free class (35 time series), a class with a minor
defect (40 time series), a class with a type 1 critical defect (45 time series) and a class
with a type 2 critical defect (20 time series).

In this section, only the selection of the polynomial order p using BIC is performed,
for K = 4 and L = 5, which respectively correspond to the number of operating states
to be identified in our diagnosis problem and the five electromechanical phases of a
switching operation. In practice, we have observed that the BIC criterion tended to
overestimate K and L for the real time series. This might suggest, as in the situation of
Gaussian mixtures, that an Integrated Classification Likelihood (ICL) type criterion
(Biernacki et al. 2000) which would also take into account the clustering-segmentation
objective, could be interesting to analyze.

Table 4 shows the BIC criteria in relation to the polynomial order p, obtained by
the ClustSeg, RegMix and PWR strategies, for K = 4 and L = 5. The maximum
values of BIC are obtained for p = 3 with the ClustSeg and PWR approaches, and
p = 11 with the RegMix approach. This result confirms a preliminary choice made
in conjunction with the expert, which consisted in modeling each regime by a third
order polynomial.

Table 5 displays the misclassification error rates and the corresponding intra-clus-
ter inertia. Although misclassification rates obtained by the three approaches are very
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Fig. 11 Clustering results provided by the ClustSeg model applied with K = 4, L = 5 and p = 3: (top)
clusters with their estimated polynomials, (middle) logistic probabilities and (bottom) estimated prototype
series

Fig. 12 Clusters and prototype series estimated by the PWR approach

Fig. 13 Clusters and prototype series estimated by the RegMix model

close, the ClustSeg approach provides the smallest intra-cluster inertia and misclassi-
fication rate. The clusters obtained by the three compared approaches are displayed
on Figs. 11, 12 and 13. The switching phases 1 and 5, which are the most abrupt ones,
have been found to be well identified by the ClustSeg approach. The phases 2, 3 and
4 have been well identified only for clusters 1 and 3 and not for clusters 2 and 4,
due to their specific defect nature. Nevertheless, the segmentation results on the latter
clusters were found to be relevant regarding the defects localizations.
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5 Conclusion

A new mixture model-based approach for the clustering of univariate time series with
changes in regime has been proposed in this paper. This approach involves modeling
each cluster using a particular regression model whose polynomial coefficients vary
over time according to a discrete hidden process. The transition between regimes is
smoothly controlled by logistic functions. The model parameters are estimated by the
maximum likelihood method, solved by a dedicated Expectation–Maximization algo-
rithm. The proposed approach can also be regarded as a clustering approach which
operates by finding groups of time series having common changes in regime. The
Bayesian Information Criterion (BIC) is used to determine the numbers of clusters and
segments, as well as the regression order. The experimental results, both from simu-
lated time series and from a real-world application, show that the proposed approach is
an efficient means for clustering univariate time series with changes in regime. In the
framework of model selection, a prospect of this work will be to derive an Integrated
Classification Likelihood (ICL) type criterion (Biernacki et al. 2000) which is known
to be suited to the clustering and segmentation objectives.

Acknowledgments The authors wish to thank M. Marc Antoni of SNCF for the data he provided and for
the support provided.

Appendix A: Convexity of the set Ek�

The set Ek� defined by:

Ek� =
{

t ∈ [t1; tm] | κk�(t;αk) = max
1≤h≤L

κkh(t;αk)
}
.

is a convex set of R. In fact, we have the following equalities:

Ek� =
{

t ∈ [t1; tm] | κk�(t;αk) = max
1≤h≤L

κkh(t;αk)

}

= {t ∈ [t1; tm] | κkh(t;αk) ≤ κk�(t;αk) for h = 1, . . . , L}
=

⋂

1≤h≤L

{t ∈ [t1; tm] | κkh(t;αk) ≤ κk�(t;αk)}

=
⋂

1≤h≤L

{
t ∈ [t1; tm] | ln

κkh(t;αk)

κk�(t;αk)
≤ 0

}

From the definition of κk�(t;αk) (see Eq. 6), it can be easily verified that ln κkh(t;αk )
κk�(t;αk )

is a linear function of t . Consequently, Ek� is convex, as the intersection of convex
sets of R.
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