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a Université de Toulon, CNRS, LSIS, UMR 7296, 83957 La Garde, France
b Aix Marseille Université, CNRS, ENSAM, LSIS, UMR 7296, 13397 Marseille, France
c Institut Universitaire de France,1 France
d UPE, IFSTTAR, GRETTIA, France
a r t i c l e i n f o

Available online 5 March 2013

Keywords:

Functional mixture discriminant analysis

Model-based approaches

Curve classification

Hidden process regression

Unsupervised learning

Clustering

EM algorithm
12/$ - see front matter & 2013 Elsevier B.V. A

x.doi.org/10.1016/j.neucom.2012.10.030

esponding author at: Université de Toulon, L
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a b s t r a c t

In this paper, we study the modeling and the classification of functional data presenting regime changes

over time. We propose a new model-based functional mixture discriminant analysis approach based on

a specific hidden process regression model that governs the regime changes over time. Our approach

is particularly adapted to handle the problem of complex-shaped classes of curves, where each class

is potentially composed of several sub-classes, and to deal with the regime changes within each

homogeneous sub-class. The proposed model explicitly integrates the heterogeneity of each class of

curves via a mixture model formulation, and the regime changes within each sub-class through

a hidden logistic process. Each class of complex-shaped curves is modeled by a finite number of

homogeneous clusters, each of them being decomposed into several regimes. The model parameters of

each class are learned by maximizing the observed-data log-likelihood by using a dedicated expecta-

tion–maximization (EM) algorithm. Comparisons are performed with alternative curve classification

approaches, including functional linear discriminant analysis and functional mixture discriminant

analysis with polynomial regression mixtures and spline regression mixtures. Results obtained on

simulated data and real data show that the proposed approach outperforms the alternative approaches

in terms of discrimination, and significantly improves the curves approximation.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Most statistical analyses involve vectorial data when the
observations are finite dimensional vectors. However, in many
application domains, such as diagnosis of complex systems [8,27],
electrical engineering [19], speech recognition (e.g., the phoneme
data studied in [11]), radar waveform [9], etc., the data are
functions (i.e curves) rather than finite dimensional vectors. The
paradigm of analyzing such data is known as functional data
analysis (FDA) [25]. The statistical approaches for FDA concern
the analysis of data for which the individuals are entire functions
or curves rather than finite dimensional vectors. The goals of FDA
include data representation for further analysis, data visualization,
exploratory analysis by performing clustering or projections,
regression, classification, etc. Additional background on FDA,
examples and analysis techniques can be found in Ramsay and
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Silverman [25]. The analysis task leads in general to learning a
statistical model namely in a supervised context for classifica-
tion, regression, or in an unsupervised way for a clustering or a
segmentation task [15,8,27,14,4,17,21,11], etc. The challenge is
therefore to build adapted models to be learned from such data
living in a very high or an infinite dimensional space. In this paper,
we consider the problem of supervised functional data classifica-
tion (discrimination) where the observations are temporal curves
presenting several regime changes over time. However, while the
global task is supervised, as we shall present it later, this global
discrimination task includes two unsupervised tasks. The first one
is to automatically cluster possibly dispersed classes into several
homogeneous clusters (i.e., sub-classes), and the second one is to
automatically determine the temporal regimes of each sub-class
which can be seen as a temporal segmentation task.

Indeed, concerning the first point of class dispersion, that is
the need of sub-classses, in many areas of application of classi-
fication, a class itself may be composed of several unknown
(unobserved) sub-classes. The learning has therefore to be treated
in an unsupervised way within each class, since no labels of
sub-groups are available. For example, in handwritten digit
recognition, there are several characteristic ways to write a digit,

www.elsevier.com/locate/neucom
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2012.10.030
http://dx.doi.org/10.1016/j.neucom.2012.10.030
http://dx.doi.org/10.1016/j.neucom.2012.10.030
mailto:faicel.chamroukhi@univ-tln.fr
http://dx.doi.org/10.1016/j.neucom.2012.10.030


F. Chamroukhi et al. / Neurocomputing 112 (2013) 153–163154
and therefore a creation of several sub-classes within the class of
digit itself, which may be modeled using a mixture density as in
Hastie and Tibshirani [18]. In complex systems diagnosis applica-
tion, where we have to decide between two classes: without
defect/with defect, one would have only the class labels as either
with or without defect, however no labels according to how a
defect would happen, namely the type of defect, the degree of
defect, means minor, critical, etc. Thus, providing an automatic
tool that decomposes the class into sub-classes would be very
helpful in making accurate decisions as well as for well inter-
pretation. Another example is the one of gene function classifica-
tion based on time course gene expression data. As stated in Gu
and Li [17] when considering the complexity of the gene func-
tions, one functional class may includes genes which involve one
or more biological profiles. Describing each class as a combination
of sub-classes, which unfortunately are very often unknown, is
necessary to provide realistic description, rather than providing a
rough representation.

We mainly focus on generative approaches, in particular
latent variable models, which are dedicated to explain the
underlying processes generating the data. As it should be expli-
citly described later, this can be achieved by explicitly integrating
the problem of class dispersion and the one of the regimes
changes over time into a two-level latent data model. The
generative approaches for functional data related to this work
are essentially based on regression analysis, including polyno-
mial regression, splines and B-splines [14,4,17,21], or also gen-
erative polynomial piecewise regression as in Chamroukhi [4]
and Chamroukhi et al. [8]. Non-parametric statistical approaches
have also been proposed for functional data discrimination as in
Ferraty and Vieu [13], Delaigle et al. [11] and clustering as in
Delaigle et al. [11]. Another possible curve modeling can be the
Gaussian processes approach [26] which is a non-parametric
approach that has been used in functional data analysis
[20,29,30], one can site in particular recent Gaussian Processes
for functional regression [30]. While they are used as a non-
parametric approach, inference in such models requires perform-
ing MCMC sampling and direct implementation is computation-
ally expensive. In this paper, we focused on parametric
approaches where the computation of conditional expectations
is analytic. The model parameters can be further used for
summarizing a set of curves into a parameter vector. This is
useful for example for a feature extraction prospective [6].
Furthermore, while Gaussian process approaches are well
adapted to approximate and to cluster non-linear functions or
curves as in Hierarchical Gaussian process mixtures for regres-
sion [30,20], the problem of regime changes within each set of
curves is still not taken into account in such approaches; only a
non-linear approximation is provided, without segmentation. In
this paper, we propose a new generative approach for modeling
classes of complex-shaped curves where each class is itself
composed of unknown homogeneous sub-classes. In addition,
the model is particularly dedicated to address the problem when
each homogeneous sub-class presents regime changes over time.
Here we extend the functional discriminant analysis approach
presented in Chamroukhi et al. [8], which relates modeling each
class of curves presenting regime changes with a single mean
curve, to a mixture formulation which leads to a functional
mixture-model based discriminant analysis. More specifically,
this approach uses a mixture of regression models with hidden
logistic processes (RHLP) [4,27] for each class of functional data,
and derives a functional mixture discriminant analysis frame-
work for functional data classification. The resulting discrimina-
tion approach is therefore a model-based functional discriminant
analysis in which learning the parameters of each class of curves
is achieved through an unsupervised estimation of a mixture of
RHLP (MixRHLP) models. A first idea of this approach was
presented in Chamroukhi [4] and Chamroukhi et al. [5].

In the next section we give a brief background on discriminant
analysis approaches for functional data classification including
functional linear and mixture discriminant analysis, and then we
present the proposed model-based functional mixture discrimi-
nant analysis with hidden process regression for curve classifica-
tion, which we will abbreviate as FMDA-MixRHLP, and the
corresponding parameter estimation procedure using a dedicated
expectation–maximization (EM) algorithm. Then, we will present
the model selection using the Bayesian Information Criterion
(BIC) [28].

In the following we denote by ððx1,y1Þ, . . . ,ðxn,ynÞÞ a given
labeled training set of curves issued from G classes where
yiAf1, . . . ,Gg is the class label of the ith curve xi. We assume that
xi consists of m observations ðxi1, . . . ,ximÞ, regularly observed at
the time points ðt1, . . . ,tmÞ with t1o � � �otm.
2. Background on functional discriminant analysis

In this section, we give a background on generative discrimi-
nant analysis approaches for functional data classification
based on functional regression. Functional discriminant analysis
approaches extend discriminant analysis approaches for vectorial
data to functional data or curves. The functional discriminant
analysis principle is as follows. Assume that we have a labeled
training set of curves and the classes’ parameter vectors
ðW1, . . . ,WGÞ where Wg is the parameter vector of the density of
class g ðg ¼ 1, . . . ,GÞ (e.g., provided by an estimation procedure
from a training set). In functional discriminant analysis, a new
curve xi is assigned to the class ŷi using the maximum a posteriori
(MAP) rule, that is

ŷi ¼ arg max
1rgrG

wgpðxi9yi ¼ g,t;WgÞPG
g0 ¼ 1 wg0pðxi9yi ¼ g0,t;Wg0 Þ

, ð1Þ

where wg ¼ pðyi ¼ gÞ is the prior probability of class g, which can
be computed as the proportion of the class g in the training set,
and pðxi9yi ¼ g,t;WgÞ its conditional density.

Different ways are possible to model this conditional density.
By analogy to linear or quadratic discriminant analysis for vec-
torial data, the class conditional density for each class of curves
can be defined as a density of a single model, e.g., a polynomial
regression model, spline, including B-spline [21], or a generative
piecewise regression model with a hidden logistic process (RHLP)
[8] when the curves further present regime changes over time.
These approaches lead to Functional Linear (or quadratic)
Discriminant Analysis which we will abbreviate as (FLDA).

In the next section, we briefly recall the FLDA based on
polynomial or spline regression.

2.1. Functional linear discriminant analysis

Functional linear discriminant analysis (FLDA), firstly proposed
in James and Hastie [21] for irregularly sampled curves, arises
when we model each class conditional density of curves with
a single model. More specifically, the conditional density pðxi9y¼
g,t;WgÞ in Eq. (1) can for example be the one of a polynomial,
spline or B-spline regression model with parameters Wg , that is:

pðxi9yi ¼ g,t;WgÞ ¼N ðxi;Tbg ,s2
g ImÞ, ð2Þ

where bg is the coefficient vector of the polynomial or spline
regression model representing class g and s2

g the associated noise
variance, the matrix T is the matrix of design which depends
on the adopted model (e.g., for polynomial regression, T is the
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m� ðpþ1Þ Vandermonde matrix with rows ð1,tj,t
2
j , . . . ,tp

j Þ for
j¼ 1, . . . ,m, p being the polynomial degree), and N ð:;l,RÞ repre-
sents the multivariate Gaussian density with mean l and covar-

iance matrix R. In this case, estimating the model for each class
consists therefore in estimating the regression model parameters

Wg , namely by maximum likelihood which is equivalent

to performing least squares estimation in this Gaussian case.
A similar FLDA approach that fits a specific generative piecewise
regression model governed by a hidden logistic process to homo-
geneous classes of curves presenting regime changes has been
presented in Chamroukhi et al. [8] and Chamroukhi [4].

However, all these approaches, as they involve a single compo-
nent density model for each class, are only suitable for homoge-
neous classes of curves. For complex-shaped classes, when one or
more classes are dispersed, the hypothesis of a single component
density model description for the whole class of curves becomes
restrictive. This problem can be handled, by analogy to mixture
discriminant analysis for vectorial data [18], by adopting a mixture
model formulation [24,32] in the functional space for each class of
curves. The functional mixture can for example be a polynomial
regression mixture or a spline regression mixture [14,4,17]. This
leads to functional mixture discriminant analysis (FMDA) [5,4,17].

The next section describes the previous work on FMDA which
uses polynomial regression and spline regression mixtures.

2.2. Functional mixture discriminant Analysis with polynomial

regression and spline regression mixtures

A first idea on functional mixture discriminant analysis
(FMDA), motivated by the complexity of the time course gene
expression functional data for which modeling each class with a
single function using FLDA is not adapted, was proposed by Gui
and Li [17] and is based on B-spline regression mixtures. In the
approach of Gui and Li [17], each class g of functions is modeled
as a mixture of Kg sub-classes, each sub-class k (k¼ 1, . . . ,Kg) is a
noisy B-spline function (can also be a polynomial or a spline
function) with parameters Wgk. The model is therefore defined by
the following conditional mixture density:

pðxi9yi ¼ g,t;WgÞ ¼
XKg

k ¼ 1

agk pðxi9yi ¼ g,zgi ¼ k,t;WgkÞ

¼
XKg

k ¼ 1

agkN ðxi;Tbgk,s2
gkImÞ, ð3Þ

where the agk’s are the non-negative mixing proportions that sum
to 1 such that agk ¼ pðzi ¼ k9yi ¼ gÞ (agk represents the prior
probability of the sub-class k of class g), zi is a hidden discrete
variable in f1, . . . ,Kgg representing the labels of the sub-classes
for each class, and Im is the m dimensional identity matrix.
The parameters of this functional mixture density for each class g

(Eq. (3)) denoted by

Wg ¼ ðag1, . . . ,agKg
,Wg1, . . . ,WgKg

Þ

can be estimated by maximizing the observed-data log-likelihood
by using the expectation–maximization (EM) algorithm [12,23] as
in Gui and Li [17].

However, using polynomial or spline regression for class repre-
sentation, as studied in Chamroukhi [4] and Chamroukhi et al. [8], is
more adapted for curves presenting smooth regime changes and for
the splines the knots have to be fixed in advance. When the regime
changes are abrupt, capturing the regime transition points needs to
relax the regularity constraints on splines, since a spline is a smooth
function [10], which leads to piecewise regression [22] for which the
knots can be optimized using a dynamic programming procedure
[1,31]. On the other hand, the regression model with a hidden
logistic process (RHLP) presented in Chamroukhi et al. [8] and used
to model each homogeneous set of curves with regime changes is
flexible and explicitly integrates the smooth and/or abrupt regime
changes via a logistic process. As pointed in Chamroukhi et al. [8],
this approach however has limitations in the case of complex-
shaped classes of curves since each class is only approximated by a
single RHLP model.

In this paper, we extend the discrimination approach proposed
in Chamroukhi et al. [8], which is based on functional linear
discriminant analysis (FLDA) using a single density model (RHLP)
for each class, to a functional mixture discriminant analysis
framework (FMDA), where each class conditional density model is
assumed to be a specific mixture density. This density is a mixture of
regression models with hidden logistic processes, which we will
abbreviate as MixRHLP. Thus, by using this functional mixture
discriminant analysis approach, we may therefore overcome the
limitation of FLDA (and FQDA) for modeling complex-shaped classes
of curves, via the mixture formulation. Furthermore, thanks to the
flexibility of the RHLP model that approximates each sub-class, as
studied in Chamroukhi et al. [7,8], we will also be able to auto-
matically and flexibly approximate the underlying hidden regimes for
each sub-class.

The proposed functional mixture discriminant analysis with
hidden process regression and the unsupervised learning procedure
for each class through the EM algorithm are presented in the next
section.
3. Proposed functional mixture discriminant analysis with
hidden process regression mixture

Let us assume as previously that each class g has a complex
shape so that it is composed of Kg homogeneous sub-classes.
Furthermore, now let us suppose that each sub-class k of class g is
itself governed by Lgk unknown regimes.

3.1. Modeling the classes of curves with a mixture of regression

models with hidden logistic processes

In the proposed functional mixture discriminant analysis (FMDA)
approach, we model each class of curves by a specific mixture of
regression models with hidden logistic processes (MixRHLP) as in
Chamroukhi [4] and Samé et al. [27]. The approach will thus be
abbreviated as FMDA-MixRHLP. According to the MixRHLP model,
each class of curves g is assumed to be composed of Kg homo-
geneous sub-groups with prior probabilities ag1, . . . ,agKg

. Each of the
Kg sub-groups is governed by Lgk hidden polynomial regimes. Thus,
for the ith curve xi issued from sub-class k of class g, the observation
xij may switch from one regime to another at each time point tj.

We let zgi denote the variable representing the unobserved
(hidden) sub-class (cluster) label of the ith curve xi for class g. We
have therefore zgi ¼ kAf1, . . . ,Kgg for sub-class k. We will thus
denote by zg ¼ ðzg1, . . . ,zgnÞ the hidden cluster labels for class g.

Furthermore, we let rgkj denote the unobserved regime label
for sub-class k of class g at time tj. Thus, we have rgkj ¼ ‘A
f1, . . . ,Lgkg for regime ‘. The variable rgkj allows for switching from
one regime to another among Lgk regimes over time. We let
therefore hgk ¼ ðhgk1, . . . ,hgkmÞ denote the labels vector governing
each sub-class k of class g.

In the following, we will encode each of the random variables z

and r in a binary manner as follows. The variable z will be indexed
by the three indexes
�
 g: the group (class)

�
 k: the sub-class (cluster)

�
 i: the observation, which is the ith curve in this case,
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so that we have zgki equals 1 if and only if the sub-class label of
the curve xi belonging to class g is k, that is zgi ¼ k. Similarly, we
will use a binary coding for the variable r which will be indexed
by the four indexes
�
 g: the group (class)

�
 k: the sub-class (cluster)

�
 ‘: the regime

�
 j: the observation at time tj,
so that we have rgk‘j equals 1 if and only if, for sub-class k of class
g, the regime at time tj is ‘, that is rgkj ¼ ‘.

The distribution of each configuration of the discrete variable
rgkj is assumed to be logistic, thus hgk governing each sub-class is
therefore assumed to be a logistic process. This choice is due to
the flexibility of the logistic function in both determining the
regime transition points and accurately modeling abrupt and/or
smooth regime changes. Indeed, as it has been well detailed in
Chamroukhi et al. [7,8], the logistic function (4) controls through
its parameters the regime transition points and the quality of
regime (smooth or abrupt) via the parameters fwgk‘0,wgk‘1g. The
probability of each regime ‘ is given by

pgk‘ðtj;wgkÞ ¼ pðrgkj ¼ ‘9tj;wgkÞ ¼
expðwgk‘0þwgk‘1tjÞPLgk

u ¼ 1 expðwgk‘u0þwgk‘u1tjÞ
,

ð4Þ

where wgk ¼ ðwgk1, . . . ,wgkLgk
Þ is its parameter vector, wgk‘ ¼

ðwgk‘0,wgk‘1Þ being the two-dimensional coefficient vector for
the ‘th logistic component. Furthermore, the regimes are
assumed to be noisy polynomial functions and the resulting
model for each sub-class is the regression model with hidden
logistic process (RHLP) [7,8]. The RHLP model indeed assumes
that the curves of each sub-class (or cluster) k of class g are
generated by Kg polynomial regression models governed by a
hidden logistic process hgk. Thus, as stated in Chamroukhi et al.
[7,8], the distribution of a curve xi belonging to sub-class k of
class g is defined by

pðxi9yi ¼ g,zgi ¼ k,t;WgkÞ ¼
Ym
j ¼ 1

XLgk

‘ ¼ 1

pgk‘ðtj;wgkÞN ðxij;b
T
gk‘tj,s2

gk‘Þ

ð5Þ

where Wgk ¼ ðwgk,bgk1, . . . ,bgkLgk
,s2

gk1, . . . ,s2
gkLgk
Þ for ðg ¼ 1, . . . ,G;

k¼ 1, . . . ,KgÞ is its parameter vector. Hence, the resulting condi-

tional distribution of a curve xi issued from class g is given by the
following conditional mixture density:

pðxi9yi ¼ g,t;WgÞ ¼
XKg

k ¼ 1

pðzi ¼ k9yi ¼ gÞpðxi9yi ¼ g,zi ¼ k,t;WgkÞ

¼
XKg

k ¼ 1

agk

Ym
j ¼ 1

XLgk

‘ ¼ 1

pgk‘ðtj;wgkÞN ðxij;b
T
gk‘tj,s2

gk‘Þ ð6Þ

where Wg ¼ ðag1, . . . ,agKg
,Wg1, . . . ,WgKg

Þ is the parameter vector

for class g, Wgk being the parameters of each of its RHLP

component density, that is
Qm

j ¼ 1

PLgk

‘ ¼ 1 pgk‘ðtj;wgkÞ N ðxij;b
T
gk‘tj,

s2
gk‘Þ as given by Eq. (5). Notice that the key difference between

the proposed FMDA with hidden process regression mixture and
the FMDA proposed in Gui and Li [17] is that the proposed
approach uses a generative hidden process regression model
(RHLP) for each sub-class rather than a spline; the RHLP is itself
based on a dynamic mixture formulation as it can be seen in
Eq. (5). Thus, the proposed approach is more adapted for captur-
ing the regime changes within curves during time.

Now, once we have defined the model for each class of
curves g, we have to estimate its parameters Wg . The next section
presents the unsupervised learning of the model parameters Wg

for each class of curves by maximizing the observed-data log-
likelihood through the EM algorithm.

3.2. Maximum likelihood estimation via the EM algorithm

Given an independent training set of labeled curves ððx1,y1Þ, . . . ,
ðxn,ynÞÞ, the parameter vector Wg of the mixture density of class g

given by Eq. (6) is estimated by maximizing the following
observed-data log-likelihood:

LðWgÞ ¼ log
Y

i9yi ¼ g

pðxi9yi ¼ g,t;WgÞ

¼
X

i9yi ¼ g

log
XKg

k ¼ 1

agk

Ym
j ¼ 1

XLgk

‘ ¼ 1

pgk‘ðtj;wgkÞN ðxij;b
T
gk‘tj,s2

gk‘Þ:

The maximization of this log-likelihood cannot be performed
in a closed form. We maximize it iteratively by using a dedicated
EM algorithm. The EM scheme requires the definition of the
complete-data log-likelihood. The complete-data log-likelihood
for the proposed MixRHLP model for each class, given the
observed data which we denote by Dg ¼ ðfxi9yi ¼ gg,tÞ, the hidden
cluster labels zg , and the hidden processes fhgkg governing the Kg

clusters, is given by

LcðWgÞ ¼
X

i9yi ¼ g

XKg

k ¼ 1

zgki log agkþ
Xm

j ¼ 1

XLgk

‘ ¼ 1

rgk‘jlog pgk‘ðtj;wgkÞ

2
4

þ
Xm
j ¼ 1

XLgk

‘ ¼ 1

rgk‘j log N ðyij;b
T
gk‘tj,s2

gk‘Þ

3
5: ð7Þ

The next paragraph shows how the observed-data log-like-
lihood LðWgÞ is maximized by the EM algorithm.

3.3. The dedicated EM algorithm for the unsupervised learning of the

parameters of the MixRHLP model for each class

For each class g, the EM algorithm starts with an initial para-
meter Wð0Þg and alternates between the two following steps until
convergence:

3.3.1. E-step

This step computes the expected complete-data log-likelihood,
given the observations Dg , and the current parameter estimation
WðqÞg , q being the current iteration number:

Q ðWg ,WðqÞg Þ ¼ E½LcðWgÞ9Dg ;W
ðqÞ
g ��

As it can be seen in the expression of LcðWgÞ, this step simply
requires the calculation of conditional expectations of the vari-
ables zgki and rgk‘j. More specifically, the expected complete-data
log-likelihood is given by

Q ðWg ,WðqÞg Þ ¼ E½LcðWgÞ9Dg ;W
ðqÞ
g � ¼

X
i9yi ¼ g

XK

k ¼ 1

gðqÞgki log agk

þ
X

i9yi ¼ g

XKg

k ¼ 1

Xm

j ¼ 1

XLgk

‘ ¼ 1

gðqÞgkit
ðqÞ
gk‘ijlog pgk‘ðtj;wgkÞ

þ
X

i9yi ¼ g

XKg

k ¼ 1

Xm

j ¼ 1

XLgk

‘ ¼ 1

gðqÞgkit
ðqÞ
gk‘ij log N ðxij;b

T
gk‘tj,s2

gk‘Þ: ð8Þ
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As shown in the expression of Q ðWg ,WðqÞg Þ, this step simply
requires the calculation of the posterior sub-class probabilities,
i.e., the probability that the observed curve xi originates from sub-
class (cluster) k for class g, which we index in a similar way as zgki

and are given by

gðqÞgki ¼ pðzgi ¼ k9xi,yi ¼ g,t;WðqÞgk Þ

¼
aðqÞgk pðxi9yi ¼ g,zgi ¼ k,t;WðqÞgk ÞPKg

k0 ¼ 1
aðqÞ

gk0
pðxi9yi ¼ g,zgi ¼ k0,t;WðqÞgl Þ

¼
aðqÞgk

Qm
j ¼ 1

PLgk

‘ ¼ 1 pgk‘ðtj;w
ðqÞ
gk ÞN ðxij;b

TðqÞ
gk‘ tj,s2ðqÞ

gk‘ ÞPKg

k0 ¼ 1
aðqÞ

gk0
Qm

j ¼ 1

PRgk0

‘ ¼ 1 pgk0rðtj;w
ðqÞ

gk0
ÞN ðxij;b

ðqÞT

gk0‘
tj,s2ðqÞ

gk0‘
Þ

ð9Þ

and the posterior regime probabilities for each sub-class, i.e., the
probability that the observed data point xij at time tj originates
from the ‘th regime of sub-class k for class g, which we index in a
similar way as rgk‘j and are given by

tðqÞgk‘ij ¼ pðrgkj ¼ ‘9xij,yi ¼ g,zgi ¼ k,tj;W
ðqÞ
gk Þ

¼
pgk‘ðtj;w

ðqÞ
gk ÞN ðxij;b

TðqÞ
gk‘ tj,s2ðqÞ

gk‘ ÞPLgk

l ¼ 1 pgklðtj;w
ðqÞ
gk ÞN ðxij;b

TðqÞ
gkl tj,s2ðqÞ

gkl Þ
� ð10Þ
3.3.2. M-step

This step updates the value of the parameter Wg by maximizing
the function Q ðWg ,WðqÞg Þ given by Eq. (8) with respect to Wg , that is

Wðqþ1Þ
g ¼ arg max

Wg

Q ðWg ,WðqÞg Þ:

It can be shown that this maximization can be performed by separate
maximizations w.r.t. the mixing proportions ðag1, . . . , agKg

Þ subject to
the constraint

PKg

k ¼ 1 agk ¼ 1, and w.r.t. the regression parameters
fbgk‘ ,s2

gk‘g and the hidden logistic processes’ parameters fwgkg.
The mixing proportions’ updates are given, as in the case of

standard mixtures, by

aðqþ1Þ
gk ¼

1

ng

X
i9yi ¼ g

gðqÞgki ðk¼ 1, . . . ,KgÞ, ð11Þ

ng being the cardinal number of class g. The maximization
w.r.t. the regression parameters consists in performing separate
analytic solutions of weighted least-squares problems where the

weights are the product of the posterior probability gðqÞgki of sub-

class k and the posterior probability tðqÞgk‘ij of regime ‘ of sub-class

k. Thus, the regression coefficient updates are given by

bðqþ1Þ
gk‘ ¼

X
i9yi ¼ g

Xm
j ¼ 1

gðqÞgkit
ðqÞ
gk‘ijtjt

T
j

2
4

3
5
�1 X

i9yi ¼ g

Xm

j ¼ 1

gðqÞgkit
ðqÞ
gk‘ijxijtj ð12Þ

and the updates for the variances are given by

s2ðqþ1Þ
gk‘ ¼

P
i9yi ¼ g

Pm
j ¼ 1 g

ðqÞ
gkit
ðqÞ
gk‘ijðxij�bTðqþ1Þ

gk‘ tjÞ
2P

i9yi ¼ g

Pm
j ¼ 1 g

ðqÞ
gkit
ðqÞ
gk‘ij

� ð13Þ

Finally, the maximization w.r.t. the logistic process parameters
fwgkg consists in solving multinomial logistic regression problems

weighted by gðqÞgkit
ðqÞ
gk‘ij which we solve with a multi-class IRLS

algorithm. The IRLS algorithm (e.g., see [16,4]) is an iterative
algorithm which consists of starting with an initial parameter

vector wð0Þgk , and updating the estimation until convergence.

A single update of the IRLS algorithm at iteration l is given by

wðlþ1Þ
gk ¼wðlÞgk�

@2Q ðqÞwgk
Þ

@wgk@wT
gk

" #�1

wgk ¼ wðlÞ
gk

@Q ðqÞwgk

@wgk

�����
wgk ¼ wðlÞ

gk

, ð14Þ
where Q ðqÞwgk
denotes the term in the Q-function (8) that depend on

wgk, that is
P

i9yi ¼ g

PKg

k ¼ 1

Pm
j ¼ 1

PLgk

‘ ¼ 1 g
ðqÞ
gkit
ðqÞ
gk‘ij log pgk‘ðtj;wgkÞ.

The parameter update wðqþ1Þ
gk is then taken at convergence of

the IRLS algorithm (14).
The pseudo-code in Algorithm 1 summarizes the EM algorithm

for the proposed MixRHLP model for each class.

Algorithm 1. Pseudo-code of the proposed algorithm for the
MixRHLP model for a set of curves.
Inputs: Labeled training set of curves ððx1,y1Þ, . . . ,ðxn,ynÞÞ

sampled at the time points t¼ ðt1, . . . ,tmÞ, the number of sub-
classes Kg, the number of regimes Lgk and the polynomial
degree p.

1:
 Initialize: Wð0Þg ¼ ða

ð0Þ
g1 , . . . ,að0ÞgKg

,Wð0Þg1 , . . . ,Wð0ÞgKg
Þ

2:
 fix a threshold E40 (e.g., E¼ 10�6),

3:
 set q’0 (EM iteration)

4:
 while increment in log-likelihood 4E do

5:
 // E-Step

6:
 for k¼ 1, . . . ,Kg do
7:
 compute gðqÞgki for i¼1,y,n using Eq. (9)
8:
 for r¼ 1, . . . ,Lgk do
9:
 compute tðqÞgk‘ij for i¼1,y,n ; j¼1,y,m using Eq.

(10)

10:
 end for

11:
 end for

12:
 // M-Step
13:
 for k¼ 1, . . . ,Kg do

14:
 compute the update aðqþ1Þ

gk using Eq. (11)
15:
 for r¼ 1, . . . ,Lgk do
16:
 compute the update bðqþ1Þ
gk‘ using Eq. (12)
17:
 compute the update s2ðqþ1Þ
gk‘ using Eq. (13)
18:
 end for

19:
 //IRLS updating loop (Eq. (14))
20:
 Initialize: set wðlÞgk ¼wðqÞgk
21:
 set a threshold z40

22:
 l’0 (IRLS iteration)

23:
 while increment in Qwgk

4z do
24:
 compute wðlþ1Þ
gk using Eq. (14)
25:
 l’lþ1

26:
 end while

27:
 wðqþ1Þ

gk ’wðlÞgk
28:
 q’qþ1

29:
 end for

30:
 end while

31:
 Ŵ ¼ ðaðqÞg1 , . . . ,aðqÞgKg

,WðqÞg1 , . . .WðqÞgKg
Þ

Output: Ŵg the maximum likelihood estimate of Wg

3.4. Curve classification and approximation with the FMDA-

MixRHLP approach

This section relates to the approximation of each class of
curves by a single or several curve models in the case of a
dispersed class, and the class prediction for new observed curves
based on the learned class parameters. Once we have an estimate
Ŵg of the parameters of the functional mixture density MixRHLP
(provided by the EM algorithm) for each class, a new curve xi is
then assigned to the class maximizing the posterior prob-
ability (MAP principle) using Eq. (1). This therefore leads us to
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the functional mixture discriminant analysis classification rule
(FMDA-MixRHLP) which is particularly adapted to deal with the
problem of classes composed of several sub-classes and to further
handle the problem of regime changes within each sub-class.

Concerning the curves approximation, each sub-class k of
class g is summarized by approximating it by a single ‘‘mean’’
curve, which we denote by x̂gk. Each point x̂gkj ðj¼ 1, . . . ,mÞ of
this mean curve is defined by the conditional expectation
x̂gkj ¼ E½xij9yi ¼ g, zgi ¼ k,tj; Ŵgk� given by

x̂gkj ¼

Z
R

xijpðxij9yi ¼ g,zgi ¼ k,tj; ŴgkÞ dxij

¼

Z
R

xij

XLgk

‘ ¼ 1

pgk‘ðtj; ŵgkÞN ðxij; b̂
T

gk‘tj,ŝ
2
gk‘Þ dxij

¼
XLgk

‘ ¼ 1

pgk‘ðtj; ŵgkÞb̂
T

gk‘tj ð15Þ

which is a sum of polynomials weighted by the logistic probabil-
ities pgk‘ that model the regime variability over time.

3.5. Model selection

The number of sub-classes (clusters) Kg for each class g

ðg ¼ 1, . . . ,GÞ and the number regimes Lgk for each sub-class can
be computed by maximizing some information criteria e.g., the
Bayesian Information Criterion (BIC) [28]:

BICðK ,R,pÞ ¼LðŴg Þ�
nWg

2
logðnÞ, ð16Þ

where Ŵg is the maximum likelihood estimate of the parameter
vector Wg provided by the EM algorithm, nWg

¼ Kg�1þ
PKg

k ¼ 1 nWgk

is the number of free parameters of the MixRHLP model, Kg�1
being the number of mixing proportions and nWgk

¼ ðpþ4ÞLgk�2
represents the number of free parameters of each RHLP model
associated with sub-class k, and n is the number of curves
belonging to the training set of the considered class. Note that
in Gui and Li [17] the number of sub-classes are fixed by the user.

In practice, the model selection procedure consists in specify-
ing a maximum values of ðKmax,Rmax,pmaxÞ and then running
the EM algorithm on each class of curves for k¼ 1, . . . ,Kmax,
R¼ 1, . . . ,Rmax and p¼ 0, . . . ,Kmax and the corresponding BIC value
is stored. The triplet corresponding to the highest value of BIC is
then selected. These computations for selecting three values can
be computationally more expensive compared to the ones in
classical model selection namely for standard mixture where only
the number of cluster has to be selected. However, we notice that
for small values of ðK ,R,pÞ, the computational cost is around few
minutes and is not dramatically high, compared to approaches
involving dynamic programming namely when using piecewise
regression or when training approaches requiring MCMC sam-
pling. Furthermore, it can be noticed that in some real situations,
such as the one we present later, one or more values can be
known (i.e., fixed by the experts namely the number of regimes
and the structure of regimes for which a three-polynomial degree
is well adapted) and the corresponding model selection procedure
is quite fast.

The next section, we evaluate the proposed approach and
perform comparisons with alternative ones.
Fig. 1. Simulated curves from a complex-shaped class composed of three sub-

classes, each of them is composed of three constant regimes.
4. Experimental study

This section is dedicated to the evaluation of the proposed
approach. We tested it on simulated data, the waveform bench-
mark curves of Breiman et al. [2] and real data from a railway
diagnosis application [7,8,27].
We performed comparisons with alternative functional dis-
criminant analysis approaches using a polynomial regression (PR)
or a spline regression (SR) model [21], and the one that uses a
single RHLP model per class as in Chamroukhi et al. [8]. These
alternatives will be abbreviated as FLDA-PR, FLDA-SR and FLDA-
RHLP, respectively. We also considered alternative functional
mixture discriminant analysis approaches that use polynomial
regression mixtures (PRM), and spline regression mixtures (SRM)
as in Gui and Li [17] which will be abbreviated as FMDA-PRM and
FMDA-SRM respectively.

We used two evaluation criteria. The first one is the misclassifica-
tion error rate computed by a 5-fold cross-validation procedure and
concerns the performance of the approaches in terms of curve
classification. The second one is the square error between the
observed curves and the estimated mean curves, which is equivalent
to the intra-class inertia, and regards the performance of the
approaches with respect to the curves modeling and approximation.
For FLDA approaches, as each class g is approximated by a single
mean curve x̂g , this error criterion is therefore given byP

g

P
i9yi ¼ gJxi�x̂gJ

2. While, for FMDA approaches, each class g is
summarized by several (Kg) mean curves fx̂gkg, each of them
summarizes a sub-class k, and the intra-class inertia in this case is
therefore given by

P
g

PKg

k ¼ 1

P
i9yi ¼ g,zgi ¼ kJxi�x̂gkJ

2. Notice that
each point of the estimated mean curve for each sub-class is given
by a polynomial function or a spline function for the case of
polynomial regression mixture classification (FMDA-PRM) or spline
regression mixture classification (FMDA-SRM) respectively, or by
Eq. (15) for the case of the proposed FMDA-MixRHLP approach.
4.1. Experiments on simulated curves

In this section, we consider simulated curves issued from two
classes of piecewise noisy functions. The first class has a complex
shape and is composed of three sub-classes (see Fig. 1), while the
second one is a homogeneous class. Each sub-class is composed
of 50 curves and each curve consists of three regimes and is
composed of 200 points.

Fig. 2 shows the obtained modeling results for the complex-
shaped class shown in Fig. 1. It can be observed that the proposed
approach accurately decomposes the class into homogeneous
sub-classes of curves by automatically determining the sub-
classes and the underlying hidden regimes for each sub-class.
Furthermore, the flexibility of the logistic process used to model
the hidden regimes allows for accurately approximating both
abrupt and/or smooth regime changes within each sub-class. This
can be clearly seen on the logistic probabilities which vary over



Fig. 2. The estimated sub-classes colored according to the partition given by the EM algorithm for the proposed approach (top); then are presented separately each sub-

class of curves with the estimated mean curve in bold line (top sub-plot) and the corresponding logistic probabilities that govern the hidden regimes (bottom sub-plot).

(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Table 1
Obtained results for the simulated curves.

Approach Classification error rate (%) Intra-class inertia

FLDA-PR 21 7.1364�103

FLDA-SR 19.3 6.9640�103

FLDA-RHLP 18.5 6.4485�103

FMDA-PRM 11 6.1735�103

FMDA-SRM 9.5 5.3570�103

FMDA-MixRHLP 5.3 3.8095�103
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time according to both which regime is active or not and how is
the transition from one regime to another over time (i.e., abrupt or
smooth transition from one regime to another). We also notice that,
approximating this class with a single mean curve, which is the case
when using FLDA approaches (i.e., FMDA-PR or FMDA-SR), fails; the
class is clearly heterogeneous. Using FMDA approaches based on
polynomial or spline regression mixture (i.e., FMDA-PRM or FMDA-
SRM) does not provide significant modeling improvements. This is
due the fact that, as we can clearly see it on the data, the sub-classes
present abrupt and smooth regime changes for which these two
approaches are not well adapted. This is confirmed on the obtained
intra-class inertia results given in Table 1. Table 1 indeed shows that
the smallest value of intra-class inertia is obtained for the proposed
FMDA-MixRHLP approach. The proposed functional mixture discri-
minant analysis approach based on hidden logistic process regres-
sion (FMDA-MixRHLP) outperforms the alternative FMDA based on
polynomial regression mixtures (FMDA-PRM) or spline regression
mixtures (FMDA-SRM). This performance is attributed to the flex-
ibility of the MixRHLP model thanks to the logistic process which is
well adapted for modeling the regime changes. We can also observe
in Table 1 that, as expected, the FMDA approaches outperforms the
FLDA approaches. This is attributed to the fact that, in this case of
heterogeneous class, FLDA provides a rough class approximation

Table 1 also shows the misclassification error rates obtained
with the proposed FMDA-MixRHLP approach and the alter-
native approaches. It can be seen that, also in terms of curve
classification the FMDA approaches provide better results com-
pared to FLDA approaches. This is due to the fact that using a
single model for complex-shaped classes (i.e., when using FLDA
approaches) is not adapted as it does not take into account the
class dispersion when modeling the class conditional density. On
the other hand, the proposed FMDA-MixRHLP approach provides
a better modeling and therefore a more accurate class prediction.

We also performed experiments to select the best model
for this data set. The true values for the dispersed class are ðK ¼ 3,
R¼ 3,p¼ 0Þ and for the other class which is homogeneous are
ðK ¼ 1,R¼ 3,p¼ 0Þ. For the procedure of model selection as described
in Section 3.5, the values of ðKmax,Rmax,pmaxÞ were set to ðKmax ¼ 4,
Rmax ¼ 4,pmax ¼ 4Þ and the proposed EM algorithm was applied to
select the best model according to the highest BIC values. The process
of model selection was repeated for 100 random samples.

The percentage of choosing the best model for the first class
composed of three sub-classes is 91% while only 9% were
obtained for the model ðK ¼ 3,R¼ 3,p¼ 1Þ. This is attributed to
the fact that the constant regimes may be approximated as well
by a polynomial of order 1 (linear function). The percentage of
choosing the best model for the second homogeneous class is
equal to 94%, the model corresponding to ðK ¼ 1,R¼ 3,p¼ 1Þ were
selected in only 6% of cases.

In the next section, the proposed approach is applied on the
waveform curves of Breiman et al. [2].
4.2. Waveform curves of Breiman

In this section, we also illustrate our proposed approach on the
waveform curves. The waveform data introduced by Breiman
et al. [2] consist of a three-class problem where each curve is
generated as follows:
�
 xiðtÞ ¼ uf 1ðtÞþð1�uÞf 2ðtÞþEt for the class 1;

�
 xiðtÞ ¼ uf 2ðtÞþð1�uÞf 3ðtÞþEt for the class 2;

�
 xiðtÞ ¼ uf 1ðtÞþð1�uÞf 3ðtÞþEt for the class 3,
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1

maxð6�9t�119,0Þ; f 2ðtÞ ¼ f 1ðt�4Þ; f 3ðtÞ ¼ f 1ðtþ4Þ and Et is a

where u is a uniform random variable on (0,1), f ðtÞ ¼

zero-mean Gaussian noise with unit standard deviation. The
temporal interval considered for each curve is (0,20) with a
constant period of sampling of 1 s. For the experiments consid-
ered here, in order to have a heterogeneous class, we combine
both class 1 and class 2 to form a single class called class 1.
Class 2 will therefore used to refer to class 3 in the previous
description of the waveform data. Fig. 3 (top) shows curves from
each of the two classes.

Fig. 3 (middle) shows the obtained modeling results for each of

the two classes by applying the proposed approach. We can see

that the two sub-classes for the first class are well identified.

These two sub-classes (clusters) are shown separately in Fig. 3

(bottom) with their corresponding mean curves. We notice that

for this data set, all FMDA approaches provide very similar results

regarding both the classification and the approximation since, as

it can be seen, the complexity for this example is only related to

the dispersion of the first class into sub-classes, and there are no

explicit regime changes; each sub-class can therefore also be

accurately approximated by a polynomial or a spline function.
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4.3. Experiments on real data

In this section, we used a database issued from a railway diagnosis
application as studied in Chamroukhi et al. [8,7] and Samé et al. [27].
The application context is the remote monitoring of the railway
infrastructure components and more particularly the switch mechan-
ism (also called points mechanism). The railway switch allows for
guiding trains from one track to another at a railway junction, and is
driven by an electric motor. The problem consists in accurately
detecting possible defect on the system in order to alert the
maintenance services. The used data are the curves of the instanta-
neous electrical power consumed during the switch actuation period.
Each curve consists of 564 points sampled at 100 Hz in the range of
(0;5.64) s (e.g., see Fig. 4). The switch actuation consists of five
successive mechanical motions of different parts of the mechanism.
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Fig. 5. Results obtained with the proposed model for the real curves. The estimated sub-classes for class 1 and the corresponding mean curves provided by the proposed

approach (a); then, we show separately each sub-class of class 1 with the estimated mean curve presented in a bold line (c,d), the polynomial regressors (degree p¼3) (f,g)

and the corresponding logistic proportions that govern the hidden processes (i,j). Similarly, for class 2, we show the estimated mean curve in bold line (b), the polynomial

regressors (e) and the corresponding logistic proportions.
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Let us notice that the shape and the duration of each phase can
vary from one situation of curves (class) to another according to
the state of the system (e.g., with a defect, without defect). The
used database is composed of 120 labeled real switch operation
curves. In Chamroukhi et al. [8,7] and Samé et al. [27], the data
were used to perform classification of three classes: no defect,
with a minor defect and with a critical defect. In this study, we
rather consider two classes where the first one is composed of the
curves with no defect and with a minor defect so that the decision
will be either with or without defect. The goal is therefore
to provide an accurate automatic modeling especially for class
1 which is henceforth dispersed into two sub-classes. The cardinal
numbers of the classes are n1 ¼ 75 and n2 ¼ 45 respectively. Fig. 4
shows each class of curves, where the first class is composed of
two sub-classes.
Fig. 5 shows the modeling results provided by the proposed
approach for each of the two classes. It shows the two sub-classes
estimated for class 1 and the corresponding mean curves for the two
classes. We also present the estimated polynomial regressors for
each set of curves and the corresponding probabilities of the logistic
process that govern the regime changes over time. We see that the
proposed method ensures both an accurate decomposition of the
complex shaped class into sub-classes and at the same time, a good
approximation of the underlying regimes within each homogeneous
set of curves. Indeed, it can be seen that the logistic process
probabilities are close to 1 when the ‘th regression model seems
to be the best fit for the curves and vary over time according to the
smoothness degree of regime transition.

Then, the obtained classification results, by considering the
FLDA approaches and the FMDA approaches (which are more



Table 2
Obtained results for the real curves of switch operations.

Approach Classification error rate (%) Intra-class inertia

FLDA-PR 11.5 10.7350�109

FLDA-SR 9.53 9.4503�109

FLDA-RHLP 8.62 8.7633�109

FMDA-PRM 9.02 7.9450�109

FMDA-SRM 8.50 5.8312�109

FMDA-MixRHLP 6.25 3.2012�109

Table 3
Number of free parameters for each of the used models for

class 1.

Model Number of parameters

for class 1

FLDA-PR 5

FLDA-SR 15

FLDA-RHLP 33

FMDA-PRM 11

FMDA-SRM 31

FMDA-MixRHLP 67
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competitive) and gave the best results for simulations, are given
in Table 2.

We can see that, although the classification results are similar
for the FMDA approaches, the difference in terms of curves
modeling (approximation) is significant, for which the proposed
FMDA-MixRHLP approach clearly outperforms the alternative
ones. This is attributed to the fact that the use of polynomial
regression mixtures for FMDA-PRM or spline regression mixtures
(FMDA-SRM) does not fit at best the regime changes compared
to the proposed model. However, even the proposed approach
provides the better results, we note that we have many para-
meters to estimate as summarized by Table 1 for the com-
plex class (class 1). On the other hand, we note that for these
values of ðK ,L,pÞ provided by the experts (Table 3), there is no
over-fitting.

We also note that, for this real data, in terms of required
computational effort to train each of the compared methods, the
FLDA approaches are faster than the FMDA ones. In FLDA, both the
polynomial regression and the spline regression approaches are
analytic and does not require a numerical optimization scheme.
The FLDA-RHLP is based on an EM algorithm which, while there-
fore performs in an iterative way, the learning scheme is quite
fast and is in mean around 1 min for the described real data, and
outperforms the alternative piecewise regression using dynamic
programming and significantly improves the results. Detailed
comparisons have been given in Chamroukhi et al. [8], namely
in terms of computational time. On the other hand, the alternative
FMDA approaches, that is the regression mixture and the spline
regression mixture-based approaches still faster and their EM
algorithm requires only few seconds to converge. However,
these approaches are clearly not adapted for the regime changes
problem; to do that, one needs to built a piecewise regression-
based model which requires dynamic programming and therefore
a dramatical computational cost especially for large curves, and
still only adapted to abrupt regime changes. As stated in Section
3.5, the training procedure for the proposed approach is not
dramatically time consuming, the training for the data of class 1
(which is the more complex class) requires a mean computational
time of 2.98 min on a Matlab software using a standard laptop
CPU of 2 GHz.
For model selection for this real data set, we notice that the
number of regimes is fixed by the experts (L¼5) and equals the
number of electromechanical phases of the switch operation [7,8].
The number of sub-classes for class 1 is K¼2 as we have no-defect
sub-class and a sub-class corresponding to curves with a minor
defect. The polynomial degree which is well adapted to the
regime shape for the curves is p¼3 (this was a preliminary choice
made in conjunction with the expert [7,8] and a model selection
procedure in Samé et al. [27] have confirmed this choice).
5. Conclusion

In this paper, we presented a new mixture model-based approach
for functional data classification. The discrimination approach
includes an unsupervised task that consists in clustering dispersed
classes into sub-classes and determining the underlying unknown
regimes for each sub-class. The proposed functional discriminant
analysis approach uses a specific mixture of hidden process regres-
sion model for each class, which is particularly adapted for modeling
complex-shaped classes of curves presenting regime changes. The
parameters of each class are estimated in an unsupervised way by a
dedicated EM algorithm and a model selection procedure is pre-
sented. The experimental results on simulated data and real data and
comparisons to alternative approaches demonstrate the effectiveness
of the proposed approach. In a first time, a future work will mainly
concern learning the MixRHLP model of each class by maximizing
a classification likelihood criterion, in which we will mainly be
interested in classification, rather than maximizing a likelihood crite-
rion as in this approach where we mainly focus on model estimation.
This will rely on the Classification EM (CEM) algorithm [3]. Another
future perspective is to build a fully Bayesian model for functional
data to explicitly incorporate some prior knowledge on the data
structure and to better control the model complexity.
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[8] F. Chamroukhi, A. Samé, G. Govaert, P. Aknin, A hidden process regression
model for functional data description. Application to curve discrimination,
Neurocomputing 73 (March (7–9)) (2010) 1210–1221.

[9] S. Dabo-Niang, F. Ferraty, P. Vieu, On the using of modal curves for radar
waveforms classification, Comput. Stat. Data Anal. 51 (10) (2007) 4878–4890.

[10] C. Deboor, A Practical Guide to Splines, Springer-Verlag, 1978.
[11] A. Delaigle, P. Hall, N. Bathia, Component wise classification and clustering of

functional data, Biometrika 99 (2) (2012) 299–313.
[12] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete

data via the EM algorithm, J. R. Stat. Soc. B 39 (1) (1977) 1–38.
[13] F. Ferraty, P. Vieu, Curves discrimination: a nonparametric functional

approach, Comput. Stat. Data Anal. 44 (1–2) (2003) 161–173.
[14] S.J. Gaffney, Probabilistic Curve-aligned Clustering and Prediction with

Regression Mixture Models, Ph.D. Thesis, Department of Computer Science,
University of California, Irvine, 2004.

[15] S.J. Gaffney, P. Smyth, Joint probabilistic curve clustering and alignment, in:
Advances in Neural Information Processing Systems (NIPS), 2004.



F. Chamroukhi et al. / Neurocomputing 112 (2013) 153–163 163
[16] P. Green, Iteratively reweighted least squares for maximum likelihood
estimation, and some robust and resistant alternatives, J. R. Stat. Soc. B 46
(2) (1984) 149–192.

[17] J. Gui, H. Li, Mixture functional discriminant analysis for gene function
classification based on time course gene expression data, in: Proceedings of
the Joint Statistical Meeting (Biometric Section), 2003.

[18] T. Hastie, R. Tibshirani, Discriminant analysis by Gaussian mixtures, J. R. Stat.
Soc. B 58 (1996) 155–176.
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