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A new approach for functional data description is proposed in this paper. It consists of a regression

model with a discrete hidden logistic process which is adapted for modeling curves with abrupt or

smooth regime changes. The model parameters are estimated in a maximum likelihood framework

through a dedicated expectation maximization (EM) algorithm. From the proposed generative model, a

curve discrimination rule is derived using the maximum a posteriori rule. The proposed model is

evaluated using simulated curves and real world curves acquired during railway switch operations, by

performing comparisons with the piecewise regression approach in terms of curve modeling and

classification.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Curve valued or functional data sets are increasingly available
in science, engineering and economics. The work presented in this
paper relates to the diagnosis of the French railway switches (or
points) which enable trains to be guided from one track to
another at a railway junction. The switch is controlled by an
electrical motor and the considered curves are the condition
measurements acquired during switch operations. Each curve
represents the electrical power consumed during a switch
operation (see Fig. 1).

To achieve the diagnosis task, the acquired curves have to be
accurately summarized. Summarizing these curves can be
performed by finding a simplified representation of each class of
curves using an adapted model.

The switch operations curves can be seen as functional data
presenting non-linearities and different changes in regime due to
the mechanical motions involved in a switch operation (see
Fig. 1). In this context, basic polynomial regression models cannot
be used to find an accurate description of such data. An
alternative approach consists in using splines to approximate
each set of curves [15,14] but this requires the setting of knots.
Another approach, that allows for fitting several (polynomial)
models to the curves for different time ranges, consists in the
piecewise polynomial regression model used in [19,2,8,13] for
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curve approximation and segmentation. A related segmentation
method is the segmentation-clustering approach of Picard et al.
[21] applied to array CGH data. One can also distinguish the
recently proposed algorithm of Hugueney et al. [13] for curves
clustering and segmentation using piecewise regression.

Let’s recall that piecewise polynomial regression is a repre-
sentation and segmentation method that partitions curves into K

segments (or regimes), each segment being characterized by its
mean polynomial curve and its variance. The parameters estima-
tion is performed using Fisher’s algorithm [9] which globally
optimizes an additive cost function [18] using a dynamic
programming procedure [1]. The piecewise regression model is
more adapted for modeling curves presenting abrupt changes and
is less efficient for curves including regimes with smooth
transitions. Moreover, the dynamic programming procedure is
computationally expensive, especially for large samples.

In this paper, a generative model is explored to give a synthetic
representation of a set of curves presenting changes in regime. The
basic idea of the proposed model is to fit a specific regression model
incorporating a discrete hidden process allowing for abrupt or smooth
transitions between different polynomial regression models. This
approach is an extension, to a set of curves, of the works presented in
[5,4]. It is related to the switching regression model introduced in [22]
and is very linked to the mixture of experts (ME) model [16,28] by the
using of a time-dependent logistic transition function.

In addition to providing a simplified representation of
functional data, the proposed model can be used for curve
discrimination through the maximum a posteriori (MAP) rule. A
related method is the functional linear discriminant analysis
(FLDA) [15], where a cubic spline is used for curves approxima-
tion. More details about the functional data analysis (FDA)

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2009.12.023
mailto:faicel.chamroukhi@inrets.fr


ARTICLE IN PRESS

0 1 2 3 4 5 6
250

300

350

400

450

500

550

600

Time (Second)

P
ow

er
 (W

at
t)

0 1 2 3 4 5 6
250

300

350

400

450

500

550

600

Time (Second)

P
ow

er
 (W

at
t)

Fig. 1. Examples of curves of electrical power consumed during various switch operations: 35 curves correspond to operations without defect (a) and 45 curves correspond

to operation with critical defect (b).
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framework can be found in [23,24]. Other works for curve
classification include neural network approaches [26] and
kernel-based learning methods [25].

This paper is organized as follows. Section 2 provides an
account of the piecewise polynomial regression model in the
context of modeling a set of curves and the used parameter
estimation technique based on dynamic programming. Section 3
introduces the proposed model for functional data representation
and provides details of the parameters estimation by means of a
dedicated EM algorithm. The curves approximation with the
proposed approach is then presented and a curve classification
scheme using the MAP rule is used. Section 4 deals with the
experimental study carried out on simulated curves and real
switch operation curves to assess the proposed approach.
2. Modeling a set of curves by the piecewise polynomial
regression model

This section provides an overview of the piecewise polynomial
regression model in a context of curves description and briefly
recalls the algorithm used to estimate its parameters.

The piecewise polynomial regression is a segmentation
method that partitions the data into K segments (or regimes).
Generally used to model a single curve or time series [19,2,8,5],
the piecewise polynomial regression model can be used to model
a set of curves [13]. The parameters estimation is performed using
a dynamic programming procedure [1,9,18] due to the additivity
of the optimized cost function over the K segments.

Let X be a training set of n curves fx1; . . . ;xngwhere each curve
xi consists of m measurements ðxi1; . . . ; ximÞ observed at the time
points ðt1; . . . ; tmÞ. In the following, the term ‘‘curves size’’ will be
used to define m. The piecewise regression model assumes that
the curves X incorporate K polynomial regimes defined on K

intervals whose bounds indexes can be denoted by
c¼ ðg1; . . . ; gKþ1Þ with g1 ¼ 0 and gKþ1 ¼m. This defines a
partition of X into K segments of curves fX1; . . . ;XKg of lengths
m1; . . . ;mK , respectively, where Xk ¼ ðx

k
1; . . . ;x

k
nÞ

T is the nmk �1
vector of the elements in the k th segment for the n curves with
xk

i ¼ fxijjjA Ikg is the set of elements in segment k of the i th curve
whose indexes are Ik ¼ ðgk; gkþ1�. Therefore, for each curve xi

ði¼ 1; . . . ;nÞ, the piecewise polynomial regression model can be
defined as follows:

8j¼ 1; . . . ;m; xij ¼ bT
k rjþskeij; eij �N ð0;1Þ; ð1Þ

where k satisfies jA Ik, bk is the pþ1 dimensional coefficients
vector of a p degree polynomial associated with the k th segment

with kAf1; . . . ;Kg, rj ¼ ð1; tj; t
2
j . . . ; t

p
j Þ

T is the time dependent pþ1

dimensional covariate vector associated with bk. As in classical
regression models, the eij are assumed to be independent random

variables distributed according to a standard Gaussian distribu-
tion representing the additive noise.

The model parameters can be denoted by ðw; cÞ where w¼

ðb1; . . . ;bK ;s2
1; . . . ;s2

K Þ is the set of polynomial coefficients and noise
variances, and c¼ ðg1; . . . ; gKþ1Þ is the set of the transition points.

2.1. Maximum likelihood estimation for the piecewise polynomial

regression model

The estimation of the parameter vector ðw; cÞ is performed by
maximum likelihood. As in classical model-based learning problems
where each observation is described by a feature vector [11], we
assume that the curves sample fx1; . . . ;xng is independent. Within a
segment Ik, the independence of the noises eij ðjA IkÞ involves the
independence of xij ðjA IkÞ conditionally on tj ðjA IkÞ. Thus, according
to model (1), it can be proved that the observation xij, given the
segment k, has a Gaussian distribution with mean bT

k rj and variance
s2

k . Therefore, the distribution of a curve xi is given by

pðxi;w; cÞ ¼
YK

k ¼ 1

Y
jA Ik

N ðxij;b
T
k rj;s2

k Þ; ð2Þ

and the log-likelihood of the parameter vector ðw; cÞ characterizing
the piecewise regression model, given the curves sample fx1; . . . ;xng

is then written as follows:

Lðw; c;XÞ ¼
XK

k ¼ 1

Xn

i ¼ 1

X
jA Ik

logN ðxij;b
T
k rj;s2

k Þ

¼ �
1

2

XK

k ¼ 1

1

s2
k

Xn

i ¼ 1

X
jA Ik

ðxij�bT
k rjÞ

2
þnmklogs2

k

2
4

3
5�nm

2
log 2p;

ð3Þ

where mk is the cardinal number of Ik.
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Maximizing this log-likelihood is equivalent to minimizing,
with respect to w and c, the criterion

Jðw; cÞ ¼
XK

k ¼ 1

1

s2
k

Xn

i ¼ 1

X
jA Ik

ðxij�bT
k rjÞ

2
þnmklogs2

k

2
4

3
5: ð4Þ

The next section shows how the parameters w and c can be
estimated using the dynamic programming.
2.2. Parameter estimation for the piecewise regression model by the

Fisher algorithm

Fisher algorithm is based on a dynamic programming
procedure that provides the optimal segmentation of the data
by minimizing an additive criterion [9,18,2]. It can be used to
minimize (4) with respect to w and c or equivalently to minimize
(5) with respect to c:

CðcÞ ¼min
w

Jðw; cÞ ¼
XK

k ¼ 1

min
ðbk ;s2

k
Þ

1

s2
k

Xn

i ¼ 1

Xgkþ 1

j ¼ gkþ1

ðxij�bT
k rjÞ

2
þnmklogs2

k

2
4

3
5

¼
XK

k ¼ 1

1

ŝ2
k

Xn

i ¼ 1

Xgkþ 1

j ¼ gk þ1

ðxij�b̂
T

k rjÞ
2
þnmklogŝ2

k

2
4

3
5; ð5Þ

with

b̂k ¼ arg min
bk

Xn

i ¼ 1

Xgkþ 1

j ¼ gkþ1

ðxij�bT
k rjÞ

2
¼ ðMT

k MkÞ
�1MT

k Xk; ð6Þ

and

ŝ2
k ¼

1

nmk

Xn

i ¼ 1

Xgkþ 1

j ¼ gk þ1

ðxij�b̂
T

k rjÞ
2; ð7Þ

where

Mk ¼

Fk

^

Fk

2
64

3
75

is the nmk � ðpþ1Þ regression matrix of the segment k for all the
curves and

Fk ¼

1 tgkþ1 t2
gkþ1 . . . tp

gk þ1

1 tgkþ2 t2
gkþ2 . . . tp

gk þ2

^ ^ ^ ^ ^

1 tgkþ 1
t2
gkþ 1

. . . tp
gk þ1

2
666664

3
777775

is the mk � ðpþ1Þ regression matrix for the segment k for
each curve.

We can see that the criterion CðcÞ is the sum of the cost

1=ŝ2
k

Pn
i ¼ 1

Pgkþ 1

j ¼ gk þ1ðxij�b̂
T

k rjÞ
2
þnmklogŝ2

k over the K segments.

The additivity of this criterion means it can be optimized globally
using a dynamic programming procedure [1,18]. Dynamic
programming considers that an optimal partition of the data into
K segments is the union of an optimal partition into K�1
segments and one segment. Thus, by denoting by C1(a,b) the
optimal cost within one segment whose elements indexes

are (a,b] with 0raobrm, the optimal costs Ck(a,b) for a

partition into k segments, k¼ 2; . . . ;K , is recursively computed
as follows:

C1ða;bÞ ¼min
ðb;s2Þ

1

s2

Xn

i ¼ 1

Xb

j ¼ aþ1

ðxij�bT rjÞ
2
þnðb�aÞlogs2

2
4

3
5

¼
1

ŝ2

Xn

i ¼ 1

Xb

j ¼ aþ1
ðxij�b̂T rjÞ

2
þnðb�aÞlogŝ2;

Ckða; bÞ ¼ min
arhrb

½Ck�1ða;hÞþC1ðhþ1; bÞ� for k¼ 2; . . . ;K;

8>>>>>>>><
>>>>>>>>:

ð8Þ

where b̂ and ŝ2 are computed, respectively, according to the Eqs.

(6) and (7) by replacing ðgk; gkþ1� by (a,b], mk by (b�a) and b̂k by

b̂. Thus, the algorithm works as follows:
Step 1:
 Initialization.
This step consists of computing the cost matrix C1(a,b) for
one segment (a,b] for 0raobrm using (8).
Step 2:
 Dynamic programming procedure.
This step consists of recursively computing the optimal
cost Ck(a,b) for k¼ 2; . . . ;K and 0raobrm using (8).
Step 3:
 Finding the optimal partition.
The optimal partition can be deduced from the
optimal costs Ck(a,b). (For more details see Appendix
A of [2]).
This algorithm has a time complexity of OðKp2n2m2Þ which can
be computationally expensive for large sample sizes.

2.3. Curves approximation and classification with the piecewise

regression model

2.3.1. Curves approximation

Once the model parameters are estimated, the curves
approximation derived from the piecewise polynomial regression

model is given by x̂ij ¼
PK

k ¼ 1 ẑjkb̂
T

k rj, 8 i¼ 1; . . . ;n, 8 j¼ 1; . . . ;m

where ẑ jk ¼ 1 if jA ðĝk; ĝkþ1� and ẑ jk ¼ 0 otherwise. The vectorial

formulation of the curves approximation X̂ can be written as

X̂ ¼
XK

k ¼ 1

Ẑ kTb̂k; ð9Þ

where Ẑ k is a diagonal matrix whose diagonal elements are

ðẑ1k; . . . ; ẑmkÞ, and

T¼

1 t1 t2
1 . . . tp

1

1 t2 t2
2 . . . tp

2

^ ^ ^ ^ ^

1 tm t2
m . . . tp

m

2
66664

3
77775

is the m� ðpþ1Þ regression matrix.

2.3.2. Curve classification

This section presents the discrimination rule which can be
derived from the piecewise polynomial regression approach to
classify curves into predefined classes.

Let us denote by Ci the class label of the curve xi, which takes
its values in the finite set f1; . . . ;Gg where G is the number of
classes. Given a labeled training set of curves, the parameter

vectors ðŵ1; ĉ1Þ; . . . ; ðŵG; ĉGÞ for the G classes are estimated by the

dynamic programming procedure. Once the classes parameters

are estimated, a new acquired curve xi is assigned to the class ĝ

that maximizes the posterior probability that xi belongs to the
class g, ðg ¼ 1; . . . ;GÞ:

ĝ ¼ arg max
1rgrG

pðCi ¼ gjxi; ŵg ; ĉgÞ; ð10Þ
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where

pðCi ¼ gjxi; ŵg ; ĉgÞ ¼
pðCi ¼ gÞpðxijCi ¼ g; ŵg ; ĉgÞPG

g0 ¼ 1 pðCi ¼ g0ÞpðxijCi ¼ g0; ŵg0 ; ĉg0 Þ
; ð11Þ

p(Ci=g) being the proportion of the class g in the training database

and pðxijCi ¼ g; ŵg ; ĉgÞ the conditional density of xi given the class

g defined by Eq. (2). The parameters ðŵg ; ĉgÞ represent the

maximum likelihood estimates of ðwg ; cgÞ.
3. The proposed regression model with a hidden logistic
process

Although the piecewise regression model described in the
previous section is based on the global optimization of a
likelihood criterion, it is naturally tailored for curves presenting
abrupt changes since the obtained curve segmentation is hard.
Moreover, it is well known that the dynamical programming
procedure is computationally expensive for large sample sizes.
This section presents the proposed regression model based on a
hidden logistic process for functional data modeling. The
flexibility of this model allows for modeling of curves with
abrupt or smooth changes in regime.
3.1. The global regression model

In the proposed model, each curve xi from the set fx1; . . . ;xng is
assumed to be generated by the following regression model with
a discrete hidden process z¼ ðz1; . . . ; zmÞ:

8j¼ 1; . . . ;m; xij ¼ bT
zj

rjþszj
eij; eij �N ð0;1Þ; ð12Þ

where zjAf1; . . . ;Kg is a hidden discrete variable representing the
label of the polynomial regression model generating xij. This
model can be reformulated in a matrix form by

xi ¼
XK

k ¼ 1

ZkðTbkþskeiÞ; ei �N ð0; ImÞ; ð13Þ

where Zk is the m�m diagonal matrix whose diagonal elements
are ðz1k; . . . ; zmkÞ, with zjk ¼ 1 if zj ¼ k (i.e if xij is generated by the k

th regression model) and zjk ¼ 0 otherwise. The variable
ei ¼ ðei1; . . . ; eimÞ

T is a m� 1 noise vector distributed according
to a Gaussian density with zero mean and identity
covariance matrix.

The next section defines the probability distribution of the
process z¼ ðz1; . . . ; zmÞ that allows the switching from one
regression model to another.
3.2. The hidden logistic process

The proposed hidden logistic process assumes that the
variables zj (j =1, .., m), given the vector t ¼ ðt1; . . . ; tmÞ, are
generated independently according to the multinomial distribu-
tion Mð1;pj1ðwÞ; . . . ;pjK ðwÞÞ, where

pjkðwÞ ¼ pðzj ¼ k;wÞ ¼
expðwk0þwk1tjÞPK
‘ ¼ 1 expðw‘0þw‘1tjÞ

; ð14Þ

is the logistic transformation of a linear function of the time point
tj, wk ¼ ðwk0;wk1Þ

T is the two dimensional coefficients vector for
the k th component of (14) and w¼ ðw1; . . . ;wK Þ. Thus, given the
vector t ¼ ðt1; . . . ; tmÞ, the distribution of z can be written as

pðz;wÞ ¼
Ym
j ¼ 1

YK
k ¼ 1

expðwk0þwk1tjÞPK
‘ ¼ 1 expðw‘0þw‘1tjÞ

 !zjk

: ð15Þ

The relevance of the logistic transformation in terms of
flexibility of transition can be illustrated through simple examples
with K=2 components. In this case, only the probability
pj1ðwÞ ¼ expðw10þw11tjÞ=1þexpðw10þw11tjÞ should be de-
scribed, since pj2ðwÞ ¼ 1�pj1ðwÞ. The variation of the proportions
pjkðwÞ over time, in relation to the parameter wk, is illustrated by
an example of 2 classes where we use the parametrization
wk ¼ lkðak;1Þ

T , with lk ¼wk1 and ak ¼wk0=wk1�

As shown in Fig. 2(a), the parameter lk controls the quality of
transitions between the regression models, the higher absolute
value of lk, the more abrupt the transition between the zj, while
the parameter ak controls the transition time point via the
inflexion point of the curve (see Fig. 2(b)).

In this particular regression model, the variable zj controls the
switching from one regression model to another of K regression
models within the curves at each time tj. The use of the logistic
process for modeling the sequence of variables zj allows for
modeling both abrupt and smooth transitions between the
regimes within the curves, unlike the piecewise regression model
which is adapted only for regimes with abrupt transitions.

3.3. The generative model of curves

The generative model of n curves from a fixed parameters
ðw;bk;s2

k Þ for k¼ 1; . . . ;K consists of two steps:
�
 generate the hidden process z¼ ðz1; . . . ; zmÞ according to the
multinomial distribution zj �Mð1;pj1ðwÞ; . . . ;pjK ðwÞÞ,

�
 for i¼ 1; . . . ;n and for j¼ 1; . . . ;m: generate each observation xij

according to the Gaussian distribution N ð�;bT
zj

rj;s2
zj
Þ.

3.4. Parameter estimation

From the model (12), it can be proved that, conditionally on a
regression model k, xij is distributed according to a normal density
with mean bT

k rj and variance s2
k . Thus, it can be proved that xij is

distributed according to the normal mixture density

pðxij; hÞ ¼
XK

k ¼ 1

pjkðwÞN ðxij;b
T
k rj;s2

k Þ; ð16Þ

where h¼ ðw;b1; . . . ;bK ;s2
1; . . . ;s2

K Þ is the parameter vector to be
estimated. The parameter h is estimated by the maximum
likelihood method.

As in the piecewise polynomial regression model, we assume
that the curves sample X ¼ fx1; . . . ;xng is independent. The
independence of the eij’s ðj¼ 1; . . . ;mÞ involves the independence
of the xij’s ðj¼ 1; . . . ;mÞ conditionally on the time vector
t ¼ ðt1; . . . ; tmÞ. It should be noticed that the temporal dependence
between the underlying segments is controlled by the logistic
distribution. The distribution of xi is then written as

pðxi; hÞ ¼
Ym
j ¼ 1

XK

k ¼ 1

pjkðwÞN ðxij;b
T
k rj;s2

k Þ: ð17Þ

Therefore, the log-likelihood of h is written as

Lðh;XÞ ¼ logpðx1; . . . ;xn; hÞ ¼
Xn

i ¼ 1

Xm

j ¼ 1

log
XK

k ¼ 1

pjkðwÞN ðxij;b
T
k rj;s2

k Þ:

ð18Þ
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The direct maximization of this likelihood is not straightforward,
we use a dedicated expectation maximization (EM) algorithm
[7,20] to perform the maximization.
3.5. The dedicated EM algorithm

The proposed EM algorithm starts from an initial parameter
hð0Þ and alternates the two following steps until convergence.

E step (expectation): This step consists in computing the
expectation of the complete log-likelihood CLðh;X ; zÞ ¼
logpðX ; z; hÞ given the observed data X and the current value hðqÞ

of the parameter h (q being the current iteration):

Q ðh; hðqÞÞ ¼ E½CLðh;X ; zÞjX ; hðqÞ�: ð19Þ

This step simply requires the computation of the posterior
probabilities

tðqÞijk ¼ pðzjk ¼ 1jxij; h
ðqÞ
Þ ¼

pjkðw
ðqÞÞN ðxij;b

TðqÞ
k rj;s2ðqÞ

k ÞPK
‘ ¼ 1 pj‘ðwðqÞÞN ðxij;b

TðqÞ
‘ rj;s2ðqÞ

‘ Þ
ð20Þ

that xij originates from the k th regression model (see appendix
for details).

M step (maximization): In this step, the value of the parameter
h is updated by computing the parameter hðqþ1Þ maximizing the
conditional expectation Q with respect to h.

Maximizing Q with respect to bk ðk¼ 1; . . . ;KÞ consists in
analytically solving a weighted least-squares problem. The
estimates are given by

bðqþ1Þ
k ¼ ðLT W ðqÞ

k LÞ�1LT W ðqÞ
k X ; ð21Þ

where W ðqÞ
k is the nm� nm diagonal matrix whose diagonal

elements are the posterior probabilities ðtðqÞ11k; . . . ; t
ðqÞ
1mk; . . . ;

tðqÞn1k; . . . ; t
ðqÞ
nmkÞ for the k th regression component and L is the nm�

ðpþ1Þ regression matrix for all the curves X such that:

L¼
T

^

T

2
64
3
75 and X ¼

x1

^

xn

2
64

3
75:
Maximizing Q with respect to s2
k ðk¼ 1; . . . ;KÞ provides the

following updating formula:

s2ðqþ1Þ
k ¼

1

nmðqÞk

Xn

i ¼ 1

Xm
j ¼ 1

tðqÞijk ðxij�bTðqþ1Þ
k rjÞ

2; ð22Þ

where mðqÞk ¼
Pm

j ¼ 1 t
ðqÞ
ijk can be seen as the cardinal number of the

component k estimated at iteration q for each curve xi (see
appendix for
more details).

The maximization of Q with respect to w is a multinomial
logistic regression problem weighted by tðqÞijk which can be solved
using a multi-class Iterative Reweighted Least Squares (IRLS)
algorithm [10,6,17,4].

The proposed algorithm is performed with a time complexity of
OðNMnmK3p2Þ, where N is the number of iterations of the EM
algorithm and M is the average number of iterations required by the
IRLS algorithm used in the maximization step at each iteration of the
EM algorithm. Thus, the ratio between the time complexity of the
piecewise polynomial regression model and the time complexity of
the proposed regression model is nm/NMK2. In practice, as illustrated
in the computing time graphics (see Fig. 8), nm is larger than NMK2

since the number of regimes K does not exceed 5 and a particular
strategy is used to initialize the IRLS algorithm. This initialization
consists in choosing an arbitrary value of the parameter w only for
the first iteration of the EM algorithm. For the other EM iterations,
the IRLS loop starts with the parameter wðqÞ estimated at the q th
iteration of the EM algorithm and provides wðqþ1Þ. This setting
reduces the running time of the IRLS algorithm and thus reduces the
running time of the EM algorithm.
3.6. Model selection

The optimal values of the pairs (K,p) can be computed by using
the Bayesian Information Criterion (BIC) [27] which is a penalized
likelihood criterion, defined by

BICðK ; pÞ ¼ Lðĥ;XÞ� nðK; pÞlogðnmÞ

2
; ð23Þ
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where nðK; pÞ ¼ Kðpþ4Þ�2 is the number of parameters of the
model and Lðĥ;XÞ is the log-likelihood obtained at convergence of
the EM algorithm.

3.7. Curves approximation and classification with the proposed

model

3.7.1. Curves approximation

With the proposed description approach, the set of curves
belonging to the same class is approximated by a single curve.
Each point of this curve is given by the expectation Eðxij; ĥÞ

8 i¼ 1; . . . ;n and 8 j¼ 1; . . . ;m where

Eðxij; ĥÞ ¼

Z
R

xijpðxij; ĥÞdxij ¼
XK

k ¼ 1

pjkðŵÞ

Z
R

xijN ðxij; b̂
T

k rj; ŝ
2
k Þdxij

¼
XK

k ¼ 1

pjkðŵÞb̂
T

k rj; ð24Þ

ĥ ¼ ðŵ; b̂1; . . . ; b̂K ; ŝ
2
1; . . . ; ŝ

2
K Þ being the parameter vector obtained

at convergence of the algorithm. The matrix formulation of the
curves approximation X̂ is given by:

X̂ ¼
XK

k ¼ 1

Ŵ kTb̂k; ð25Þ

where Ŵ is a diagonal matrix whose diagonal elements are the
proportions ðp1kðŵÞ; . . . ;pmkðŵÞÞ associated with the k th regres-
sion model.

3.7.2. Curve classification

Basing on the proposed curves modeling approach, a curve
discrimination rule can be derived. Given a labeled training set of
curves, the parameters h1; . . . ; hG of the G classes are first
estimated by applying the proposed description approach to each
class of curves. This approach is generally used for supervised
learning of generative models. Whereas, for the discriminative
approaches, which directly estimate the decision boundaries, the
parameters of each class are not estimated independently from
the other classes.

Once the classes parameters are estimated by the EM
algorithm, a new acquired curve xi is assigned to the class ĝ , as
described in Section 2.3.2, by the MAP rule:

ĝ ¼ arg max
1rgrG

pðCi ¼ gjxi; ĥgÞ; ð26Þ

where

pðCi ¼ gjxi; ĥgÞ ¼
pðCi ¼ gÞpðxijCi ¼ g; ĥgÞPG

g0 ¼ 1 pðCi ¼ g0ÞpðxijCi ¼ g0; ĥg0 Þ
; ð27Þ

pðxijCi ¼ g; ĥgÞ being the conditional density of xi given the class g

defined by Eq. (17). The parameter vector ĥg ¼ ðŵg ; b̂1g ; . . . ;

b̂Kg ; ŝ
2
1g ; . . . ; ŝ

2
KgÞ is the maximum likelihood estimate of h for

the class g.
Table 1
Simulation parameters for experiment 1.

b1 ¼ 0 w1 ¼ ½3341:33;�1706:96�

b2 ¼ 10 w2 ¼ ½2436:97;�810:07�

b3 ¼ 5 w3 ¼ ½0;0�
4. Experimental study

This section is devoted to an evaluation of the proposed
approach in terms of curves description and classification, using
simulated data sets and real data sets. For this purpose, the
proposed approach was compared with the piecewise polynomial
regression approach. Two evaluation criteria were used.
�
 The first criterion is the mean square error between the true
simulated curve without noise and the estimated curve given
by
3 x̂ ij ¼

PK
k ¼ 1 pjkðŵÞb̂

T

k rj for the proposed model;

3 x̂ ij ¼
PK

k ¼ 1 ẑjkb̂
T

k rj for the piecewise polynomial regression

model.

The mean square error criterion is computed by the formula
1=nm

Pn
i ¼ 1

Pm
j ¼ 1½Eðxij; hÞ�x̂ ij�

2, h being the true parameter
vector. It is used to assess the models with regard to curves
modeling.
�
 The second criterion is the curves misclassification error rate
computed by a 5-fold cross-validation procedure.
4.1. Evaluation in terms of curves modeling

Three experiments were performed to evaluate the proposed
approach in terms of curves modeling:
�
 the first experiment aims at observing the effect of the
smoothness level of transitions on estimation quality. The
smoothness level of transitions was tuned by means of the
term lk ¼wk1 seen in Section 3.2 and Fig. 2(a). Each simulated
sample of curves consisted of n=10 curves with a curves size
m=100. The simulated curves consisted of three constant
polynomial (K=3, p=0) with transition time points at 1 and 3 s.
Each simulated curve consisted in a mean curve corrupted by
an additive uniform zero-mean Gaussian noise with a standard
deviation s¼ 2. The j th point of the mean curve is given byPK

k ¼ 1 pjkðwÞb
T
k rj. The set of simulation parameters fbk;wkg for

this experiment is given in Table 1. We have considered
decreasing values of jlkj, which correspond to increasing
values of the smoothness level of transitions (see Table 2).
Fig. 3(a) shows the true denoised curves for the 10 smoothness
levels of transitions and Fig. 3(b) shows an example of
simulated curves for a fixed smoothness level,

�
 the second experiment aims at observing the effect of the

sample size n on estimation quality. It varies from 10 to 100 by
step of 10, and the curves size was set to m=100,

�
 the third experiment aims at observing the effect of the curves

size m on estimation quality. It varied from 100 to 1000 by step
of 100 for a fixed number of curves n=50.

For the second and the third experiments, the curves were
simulated with the proposed regression model with hidden
logistic process given by Eq. (12). The simulated curves consisted
of three polynomial regimes (K=3) with a polynomial of order
p=2 with transition time points at 1 and 4 s. Table 3 shows the set
of simulation parameters for these experiments and Fig. 4 shows
an example of simulated curves with n=50 and m=100. For all the
experiments, we considered that the curves were observed over
5 s with a constant sampling period (Dt¼ tj�tj�1 is constant).
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Table 2
The different smoothness levels from abrupt transitions to smooth transitions for the situations shown in Fig. 3(a).

Smoothness level of transitions 1 2 3 4 5 6 7 8 9 10

jlkj jwk1j

1

jwk1j

2

jwk1j

5

jwk1j

10

jwk1j

20

jwk1j

40

jwk1j

50

jwk1j

80

jwk1j

100

jwk1j

125
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Fig. 3. The true denoised curves from abrupt transitions to smooth transitions for the first experiment (a) and an example of simulated curves ðn¼ 10;m¼ 100Þ with a

smoothness level of transition corresponding to the level 8 in Table 2.

Table 3
Simulation parameters for experiment 2 and experiment 3.

b1 ¼ ½23;�36;18� w1 ¼ ½92:72;�46:72� s1 ¼ 1

b2 ¼ ½-3:9;11:08;�2:2� w2 ¼ ½61:16;�15:28� s2 ¼ 1:25

b3 ¼ ½-337;141:5;�14� w3 ¼ ½0;0� s3 ¼ 0:75
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Fig. 4. Example of 50 curves simulated according to the proposed regression

model with a curves size m¼ 100, for the second and the third experiment.
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Fig. 5. Approximation error in relation to the smoothness level of transitions,

obtained with the proposed approach (square) and the piecewise polynomial

regression approach (circle).
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For each value of n, each value of m and each value of the
smoothness level of transitions, the values of assessment criteria
were averaged over 20 different curves samples. Fig. 5 shows the
error of curves modeling (approximation error) in relation to the
smoothness level of transitions. It can be seen that, for abrupt
transitions (levels 1, 2 and 3), the two approaches provides similar
results. However, when the curves present smooth transitions, the
proposed approach provides more accurate results than the
piecewise regression approach.

For the second and the third experiments, it can be seen in
both Figs. 6 and 7 that the curves modeling error decreases when
the curves size m and the number of curves n increase for the two
approaches. The results provided by the proposed model are more
accurate than those of the piecewise regression approach.
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Finally, Fig. 8 shows that the computation time of the proposed
algorithm does not increase much, while that of the piecewise
approach grows considerably with the number of curves and with
the curves size.
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Fig. 6. Approximation error in relation to the curves size m for n¼ 50 curves,

obtained with the proposed approach (square) and the piecewise polynomial

regression approach (circle).
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Fig. 7. Approximation error in relation to the number of curves n for a curves size

m¼ 100, obtained with the proposed approach (square) and the piecewise

polynomial regression approach (circle).
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4.2. Evaluation in terms of curve classification

This section is concerned with the evaluation of the proposed
approach in terms of curve classification. Two types of data sets
are considered: the waveform data set of Breiman and a real-
world data set from railway switch operations.

4.2.1. Waveform curves of Breiman

In this part, the proposed approach is evaluated in terms of
curve classification by considering the waveform data introduced
in [3] and studied in [12,26] and elsewhere. The waveform data
consist in a three-class problem where each curve is generated as
follows:
�

1

1

1

C
P

U
 ti

m
e 

(S
ec

on
ds

)

es (

n ap

Tab
Clas

M

P

P

x1ðtÞ ¼ uh1ðtÞþð1�uÞh2ðtÞþet for the class 1;

�
 x2ðtÞ ¼ uh2ðtÞþð1�uÞh3ðtÞþet for the class 2;

�
 x3ðtÞ ¼ uh1ðtÞþð1�uÞh3ðtÞþet for the class 3;
where u is a uniform random variable on ð0;1Þ,
�
 h1ðtÞ ¼maxð6�jt�11j;0Þ;

�
 h2ðtÞ ¼ h1ðt�4Þ;

�
 h3ðtÞ ¼ h1ðtþ4Þ;
and et is a zero-mean Gaussian noise with unit standard deviation.
The temporal interval considered for each curve is [0;20] with a
constant period of sampling of 1 s. Five hundred simulated curves
were drawn for each class.

Table 4 shows the average classification error rates and the
corresponding standard deviations (in parentheses) obtained with
the two approaches. It can be observed that the proposed
regression approach provides more accurate discrimination
results than those of the piecewise polynomial regression
approach.

Figs. 9 and 10 show the curves estimated, respectively, by the
piecewise polynomial regression approach and the proposed
approach for K=2 and p=3. We can see that the curve estimated
by the piecewise regression approach presents discontinuities
since it is computed from a hard segmentation of the curves,
while, the curves approximation provided with the proposed
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left) and in relation to the number of curves n for a curves size m¼ 500 (right),

proach (circle).

le 4
sification results for the waveform curves.

odeling approach Test error rates (%)

iecewise regression model 2.4 (0.64)

roposed regression model 1.67 (0.84)
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Fig. 9. Some examples of the waveforms for the three classes with 50 curves per class and the estimated model for each class obtained with the piecewise polynomial

regression approach.
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Fig. 10. Some examples of the waveforms for the three classes with 50 curves per class and the estimated model for each class obtained with the proposed approach.

Table 5
Classification results for the switch operation curves.

Modeling approach Test error rates (%)

Piecewise regression model 1.82 (5.74)

Proposed regression model 1.67 (2.28)
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regression model is continuous due to the use of the logistic
function adapted to both smooth and abrupt regime changes.

4.2.2. Real-world curves

This section is devoted to an evaluation of the proposed
approach in terms of curve classification using real curves from
switch operations. A database of 120 curves subdivided into three
classes was used:
�
 g=1: no defect class;

�
 g=2: minor defect class;

�
 g=3: critical defect class.
The cardinal numbers of the three classes are n1=35, n2=40 and
n3=45, respectively. The results in terms of misclassification error
rates are given in Table 5.

We can see that the proposed approach provides results
slightly better than those of the piecewise regression approach.
Although the difference in terms of misclassification error is not
very significant, the proposed method ensure, unlike the piece-
wise regression approach, the continuity of the estimated curves
(see Figs. 11 and 12). Since the transitions involved in the
segments 1 and 5 are abrupt, they are well estimated by the two
approaches. However, the segments 2 and 4 estimated by the
proposed approach have been found more realistic regarding the
true phases involved in a real switch operation.

It should be mentioned that, despite the very good results
obtained for curves description, this approach may have limita-
tions in terms of curve classification. The next section illustrates
this limitation through simulations.
4.3. Behavior of the proposed approach for complex shaped classes

The aim of this part is to show the behavior of the proposed
classification approach for classes having complex non-convex
shapes. We consider simulated curves from two classes:
�
 Class 1: This class consists of 40 curves simulated with the
generative model presented in Section 3.3. Fifteen curves are
simulated with the parameters estimated from the first class of
the real dataset (see Fig. 12 (left)) and 25 curves are simulated
with the parameters estimated from the second class (see
Fig. 12 (middle)).

�
 Class 2: This class consists of 37 curves simulated in the

following manner: 17 curves are simulated with the para-
meters estimated from the second class of the real data and 20
curves are simulated with the parameters estimated from the
third class (cf. Fig. 12 (middle) and Fig. 12 (right), respectively).
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Fig. 11. The three classes of switch operation curves and the corresponding estimated curve (top) and the segmentation (bottom) obtained with the piecewise polynomial

regression model.
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Fig. 12. The three classes of the switch operation curves and the estimated curves and the corresponding estimated logistic probabilities for each class of curves obtained

provided by the proposed approach.
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Fig. 13 shows the simulated curves, the estimated curves
approximation and the estimated logistic probabilities.

In this setting, the classification error rate obtained with the
proposed approach is 20% with a standard deviation of 8.16%. The
poor performances in this case can be attributed to the non-
homogeneous nature of the simulated groups. As it can be
observed in Fig. 13, especially for class 2, the proposed model is
not adapted for classes having complex shape.
5. Conclusion

This paper introduces a new approach for functional data
description. The proposed approach consists in a regression model
governed by a discrete hidden process. The logistic functions used
as the probability distributions of the hidden variables allow for
smooth or abrupt transitions between various polynomial
regression components over time. A curves discrimination
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Fig. 13. Two complex classes (40 curves from class 1 and 37 curves from class 2) generated according to the generative model presented in Section 3.3.
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method is derived by applying the Maximum A Posteriori rule. An
experimental study performed on simulated data and real curves
acquired during switch operations reveals good performances of
the proposed approach in terms of curve modeling and classifica-
tion, compared to the piecewise polynomial regression approach.
The limitations of the proposed approach in terms of classification
have been shown for complex shaped classes. A future work will
consist in considering a more efficient approach to deal with these
limitations, where a complex shaped class will be modeled by a
mixture of hidden process regression models.
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Appendix A. The EM algorithm

In the context of maximizing the likelihood by the EM
algorithm, the complete log-likelihood [7] is written as

CLðh;X ; zÞ ¼ logpðx1; . . . ;xn; zjx; hÞ

¼ log
Yn

i ¼ 1

Ym
j ¼ 1

YK
k ¼ 1

½pðzj ¼ k;wÞpðxijjzj ¼ k; hÞ�zjk

¼
Xn

i ¼ 1

Xm
j ¼ 1

XK

k ¼ 1

zjklog½pjkðwÞN ðxij;b
T
k rj;s2

k Þ�: ð28Þ

The EM algorithm starts from an initial parameter hð0Þ and
alternates the two following steps until convergence:
E step (expectation): This step computes the conditional
expectation of the complete log-likelihood given the observations
and the current value hðqÞ:

Q ðh;hðqÞÞ ¼ E½CLðh;X ; zÞjX ; hðqÞ�

¼
Xn

i ¼ 1

Xm

j ¼ 1

XK

k ¼ 1

Eðzjkjxij; h
ðqÞ
Þlog½pjkðwÞN ðxij;b

T
k rj;s2

k Þ�

¼
Xn

i ¼ 1

Xm

j ¼ 1

XK

k ¼ 1

tðqÞijk log½pjkðwÞN ðxij;b
T
k rj;s2

k Þ�

¼
Xn

i ¼ 1

Xm

j ¼ 1

XK

k ¼ 1

tðqÞijk logpjkðwÞ

þ
Xn

i ¼ 1

Xm

j ¼ 1

XK

k ¼ 1

tðqÞijk logN ðxij;b
T
k rj;s2

k Þ;

where tðqÞijk is the posterior probability that xij originates from the k

th regression model defined by Eq. (20).
As shown in the expression of Q, this step simply requires the

computation of tðqÞijk .
M step (maximization): This step updates the value of the

parameter h by maximizing Q with respect to h. To perform this
maximization, we can see that Q is written as

Q ðh;hðqÞÞ ¼Q1ðwÞþ
XK

k ¼ 1

Q2ðbk;s2
k Þ; ð29Þ

with

Q1ðwÞ ¼
Xn

i ¼ 1

Xm

j ¼ 1

XK

k ¼ 1

tðqÞijk logpjkðwÞ ð30Þ

and

Q2ðbk;s2
k Þ ¼

Xn

i ¼ 1

Xm

j ¼ 1

tðqÞijk logN ðxij;b
T
k ri;s2

k Þ
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¼�
1

2

1

s2
k

Xn

i ¼ 1

Xm

j ¼ 1

tðqÞijk ðxij�bT
k rjÞ

2
þnmðqÞk logs2

k

2
4

3
5

�
nmðqÞk

2
log2p; k¼ 1; . . . ;K ; ð31Þ

where mðqÞk ¼
Pm

j ¼ 1 t
ðqÞ
ijk can be seen as the number of elements in

component k estimated at iteration q for each curve xi. Thus, the
maximization of Q can be performed by separately maximizing
Q1ðwÞ with respect to w and Q2ðbk;s2

k Þ with respect to ðbk;s2
k Þ for

k¼ 1; . . . ;K .
Maximizing Q2 with respect to bk consists in analytically solving

a weighted least-squares problem. The estimates are given by

bðqþ1Þ
k ¼ arg min

bk

Xn

i ¼ 1

Xm

j ¼ 1

tðqÞijk ðxij�bT
k rjÞ

2

¼ ðLT W ðqÞ
k LÞ�1LT W ðqÞ

k X : ð32Þ

Maximizing Q2 with respect to s2
k provides the following

updating formula:

s2ðqþ1Þ
k ¼ arg min

s2
k

1

s2
k

Xn

i ¼ 1

Xm

j ¼ 1

tðqÞijk ðxij�bTðqþ1Þ
k rjÞ

2
þnmðqÞk logs2

k

2
4

3
5

¼
1

nmðqÞk

Xn

i ¼ 1

Xm
j ¼ 1

tðqÞijk ðxij�bTðqþ1Þ
k rjÞ

2: ð33Þ
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