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Abstract

In this work we propose to extend the finite parsimonious Gaussian mixture to
the infinite case so that the classification of our data could be performed in one
stage. We implemented the eigenvalue decomposition of the covariance matrix
of each cluster to the Infinite Gaussian mixture model and made it parsimonious.
We developed an MCMC algorithm (Gibbs sampling) to learn the various models
and we named this approach the bayesian non-parametric parsimonious approach
for cluster analysis. The new approach will be more flexible in terms of modeling
and will automatically provide the partition of the data and the number of clusters.
This approach will be applied into the challenging problem of Whale song decom-
position NIPS4B challenge. These algorithms would also give efficient clustering
on complex sequence of pulses, and then may allow muti-source/multi-animals
labelling.

1 Introduction

Clustering is one of the essential tasks in machine learning and statistics. One of the main problem
in data analysis is to estimate the number of clusters that fits best the data. For that we find different
approaches in the literature, where one of the most popular is the model-based clustering [1, 2].
These finite parsimonious Gaussian mixtures rely on the eigenvalue decomposition of the covari-
ance matrix, allowing the models to change between the simplest spherical one to the more general
[3]. The model parameters can be estimated in a Maximum Likelihood (ML) framework by the
Expectation Maximization (EM) algorithm [4] or in a Maximum A Posteriori estimation (MAP) [5]
framework or by using MCMC sampling techniques[6, 7]. In this approach, as well as in standard
model-based clustering techniques, the selection of the number of clusters is performed by using
penalized likelihood criteria such as the Bayesian Information Criteria (BIC) [8], Akaike Informa-
tion Criterion [9], Integrated Classification Likelihood (ICL)[10], etc. So we need to perform a two
stages for classification, first estimate the number of clusters and then run th EM algorithm for the
classification of the data.

An alternative well-principled approach for the difficult problem of model selection is to use the
Bayesian Non-Parametric (BNP) [11] methods for clustering, one of them being the infinite Gaus-
sian mixture model (IGMM) [12]. Indeed, the principle of IGMM is based on the one of the Chinese
Restaurant Process (CRP) [13, 14, 15, 16, 17] which is well suited to the problem of non-parametric
clustering. This alternative gives us the possibility to obtain the number of clusters in the same
stage of clustering so that as the new data will be observed the number of model parameters can
be changed. The general (full GMM) model used in IGMM is not so flexible as in the case of the
model-based clustering [3, 18] where the covariance matrix can take different forms, depending on
the volume shape and orientation. Therefore we proposed to develop a new approach that will rest
being an infinite Gaussian mixture model approach that will give us the possibility to automatically
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provide the number of classes but know with an eigenvalue decomposition of the covariance matrix
giving more flexibility for the model.

The paper is organized as follows. Section 2 briefly discusses previous work on finite Gaussian
mixture clustering, in particular we show the model-based clustering approach. Then, Section 3,
presents the proposed approach and Section 4 shows experiment results after application to the
Whale song decomposition NIPS4B challenge of the EM algorithm with ML and MAP frameworks
and the proposed bayesian non-parametric parsimonious approach.

2 Parametric parsimonious Gaussian clustering

It is supposed that X = (x1, . . . ,xn) is a sample of n i.i.d observations in Rd, and z = (z1, . . . , zn)
is the corresponding unknown cluster labels where zi ∈ {1, . . . ,K} represents the cluster label of
the ith data point xi, K being the possibly unknown number of clusters.

In the model-based clustering [1, 2, 5] the data X is proposed to be generated from a mixture model
with the density:

p(xi;θ) =

n∏
i=1

K∑
k=1

πkfk(xi; θk) (1)

having fk a distribution with parameters θk and the non-negative mixing proportions πk that sum to
one.

We will suppose in particular the multivariate Gaussian Mixture Model (GMM) [1] to cluster the
data X so that in this case we have fk being a multivariate Gaussian distribution (equation 2) with
the parameters θk = (µk,Σk) which are respectively the mean vector and the covariance matrix for
the kth Gaussian component density.

fk(xi|θk) = Nk(xi|µk,Σk) ≡ 2π|Σk|
1
2 exp

{
−1

2
(xi − µk)TΣ−1

k (xi − µk)

}
(2)

The finite parsimonious GMM by the eigenvalue decomposition of the covariance matrix makes the
model more flexible, giving a possibility to variate each cluster density by volume, orientation and
shape. The parametrization of the covariance matrix is given in equation 3.

Σk = λkDkAkD
T
k (3)

where λk is a scalar that defines the volume, Dk a orthogonal matrix that defines the orientation and
Ak is a diagonal matrix with determinant 1 witch defines the shape. This decomposition leads to
fourteen flexible models [3] going from simplest spherical models to the complex general one.

One of the most used algorithm for learning the model is the Expectation Maximization(EM) algo-
rithm that maximizes the likelihood [19, 20] is an iterative algorithm consisting of two stages, the
expectation of the complete data log-likelihood named the E-step and the maximization of the ex-
pected complete data log-likelihood named the M-step. Maximizing the likelihood (ML framework)
will maximize the mixture likelihood p(X|πk,µk,Σk).

p(X|πk,µk,Σk) =

n∏
i=1

K∑
k=1

πk Nk(xi|µk,Σk)

The maximizing of the posteriori (MAP framework) can be also performed by the EM algorithm [5].
It leads by adding a prior to the mixtures parameters so that it maximizes the following posterior
parameter distribution p(θ|X)

p(θ|X) = p(θ)p(X|θ)
where p(θ) = p(Σ)p(µ) is the prior for the parameters of the mixture. Also we find in the literature
different extension of the EM algorithm like CEM, GEM, etc. that could also be used to learn
the model. Another alternative to learn the models are the Markov Chain Monte Carlo (MCMC)
algorithms (like Gibbs sampling) [7, 21, 22].

However before learning the model with one of these finite gaussian mixture model we must have the
answer to what is the number of mixtures in our model. For that we pose Kmax that is a maximum
number of cluster possible and we compute the penalized log-likelihood criteria (BIC, AIC, ICL,
etc.) After choosing the optimal number of clusters that fit best the data we can run one of the
learning algorithms.

2



3 Bayesian non-parametric parsimonious clustering

First off all we make attention that the term of non-parametric learning does’t mean at all that the
model doesn’t have parameters, indeed it means that it could have an infinite number of them as
the data grows, in other words it is assumed that the observed data are governed by an infinite
number of clusters, but only a finite number of them does actually generates the data. Bayesian non-
parametric (BNP) mixtures for clustering offers a good alternative to infer the number of clusters
form data within one stage, rather then in two stages like in the case of the parametric modeling
[11, 23, 24, 12]. BNP approach proposes to pose a prior on an infinite partitions in such a way that
a finite number of clusters will be active. We could use the Chinese Restaurant Process (CRP) prior
[25, 26, 23] or a Dirichlet Process Mixture (DPM) [27, 23, 28].

In this work we proposed to develop the previous work called the infinite Gaussian mixture model
[12], based on the full GMM, by extending it to a more flexible mixture model where the covari-
ance matrix has an eigenvalue decomposition [3, 18]. We call the new approach the bayesian non-
parametric parsimonious approach. We assumed the Chinese Restaurant Process (CRP) prior for the
cluster assignments.

Indeed CRP provides a distribution on the infinite partitions of the data, that is a distribution over
the positive integers 1, . . . , n. Considering the following joint distribution of the unknown cluster
assignments: p(z1, . . . , zn) = p(z1)p(z2|z1)p(z3|z1, z2) . . . p(zn|z1, z2, . . . , zn−1) we can compute
each term by using the CRP distribution. The problem of the Chinese Restaurant Process can be
expressed by a real human situation if supposing a restaurant that could be extended in a real time
by having the possibility to add an infinite number of tables if the number of customers grows. So
the CRP is explained as follows: supposing we have this kind of restaurant where one customer
is visiting it. This customer enters and sits at the first table. When the second customers enters
the restaurant he will sit with a probability 1

1+α to the first table and with probability α
1+α to the

second table where α will be a dispersion parameter. Going future we say that the n-th customer
will be sitting at a new table with a probability equal to α

n−1+α or at the table k with the probability
nk

n−1+α where nk is the number of customers sitting at table k. The idea of this model is that
humans adaptively learn the number of categories of their observations. In the clustering problem
the customers are the the observations, so that the new observations can enter the clustering method
and choices the table meaning the cluster. This can be explicitly formulated as follows

p(zi = k|z1, ..., zi−1) = CRP(z1, . . . , zi−1;α) =

{ nk

i−1+α if k ≤ K+
α

i−1+α if k > K+
(4)

whereK+ is the number of tables that have customers sitting on that table nk > 0 or it is also known
as active classes. We note k ≤ K+ when the k-th table is occupied or in clustering problem the new
data observed will be associated to the k-th cluster and k > K+ when a new table will be occupied
or the new observation will form a new cluster.

It is also used a prior for the mixture parameters as in MAP approach or the MCMC Gibbs sampling.
This priors are used to be conjugate priors so that for example we have the normal inverse-Wishart
prior distribution for the mean and the covariance matrix if we use a full GMM. We note this prior
distribution as G0 so that we can show the following generative process.

θi ∼ G0 (5)
zi ∼ CRP(z1, . . . , zi−1;α) (6)
xi ∼ p(.|θzi)· (7)

According to this generative process we see that θi exhibit a clustering property so that the unique
values of the parameters are the number of mixtures that fits the data. G0 is called the base distri-
bution [27, 23]. The distribution over the partition zi as it was talked before is a CRP distribution.
We proposed to develop the infinite parsimonious Gaussian mixture, where the covariance matrix is
parameterized in term of eigenvalue decomposition to provide more flexibility of this model. So the
priors on the parameters depends on the type of the parsimonious model. Having chosen the MCMC
Gibbs sampling [12, 29, 16, 23] for learning the model we will have different sampling depending
on the covariance matrix decomposition.

Indeed, yet we investigated seven parsimonious models, covering the three families of the mixture
models which are the general, the diagonal and the spherical family. The parsimonious models
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therefore go from the simplest spherical one to the more general full model. In table 1, we summarize
the considered models and the corresponding prior for each model used in Gibbs sampling.

Nr. Decomposition Model-Type Prior Applied to
1 λI Spherical IG λ
2 λkI Spherical IG λk

3 λB Diagonal IG each diagonal element of λB
4 λkB Diagonal IG each diagonal element of λkB
5 λDADT General IW Σ = λDADT

6 λkDADT General IG and IW λk and Σ = DADT

7 λkDkAkDT
k General IW Σk = λkDkAkDT

k

Table 1: Considered Parsimonious GMMs via eigenvalue decomposition and the associated prior distribution
for the covariance. Note that I means that it is an inverse distribution, G means that it is a Gamma distribution
and W means that it is a Wishart distribution.

4 Experiments

We compared our Bayesian non-parametric parsimonious mixture with model-based clustering
(ML-based and MAP-based) approaches. For the ML and MAP approaches, we used the EM algo-
rithm to estimate the model parameters. The model selection is performed by ICL for values of K
between 1 and 60. For each value of K, we considered 10 runs of EM, with different initializations,
to estimate the mixture model parameters and the one providing the best solution (corresponding to
the maximum value of the log-likelihood is selected). Then, the value of K corresponding to the
highest ICL value is considered as the best solution with the optimal number of clusters.

For the Bayesian non-parametric approach (IGMM), we used the Gibbs sampler by running it ten
times and selecting the best solution in the sense of the posterior.

We illustrate the estimations of the number of classes for Gibbs samplings for 2 spherical models λI
and λkI, 2 diagonal models λB and λkB and two general models λkDADT and λkDkAkD

T
k in

the histograms of figure 1. Note that we dont take in consideration the first 50 iterations of the Gibbs
sampling. For this whale song data we can conclude that for these models we have been estimated
a different number of clusters, that could be compared when estimating the number of clusters by
using the information criteria.

λI λB λkDADT

λkI λkB λkDkAkDT
k

Figure 1: Posterior distribution of the number of clusters obtained by the proposed bayesian non-
parametric approach.
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The table 2 shows the log-likelihood values that are divided by 106 and the number of estimated
classes obtained by using the Expectation Maximization (EM) algorithm with one of the information
criteria and the proposed bayesian non-parametric parsimonious method for clustering the data. By
analysing the results we can conclude that the best solution is by using the more general model with
the eigenvalues decomposition of the covariance matrix λkDkAkD

T
k , meaning that the volume, the

orientation and the shape can vary for each cluster. The best likelihood obtained here is by using the
EM with maximum a posteriori framework algorithm, that estimates 18 classes. On the other hand,
the bayesian non-parametric model estimates 15 classes. By using the spherical models, the one with
the equal volumes λI and the other one with different volumes λkI, we notice that the estimation of
classes are taken to be the maximum, equal to 60, when using the finite Gaussian Mixture Models
(GMM), while for the infinite case we have estimated 9 classes for the λI model and 23 classes
for the λkI model. Also, for the diagonal models, we have the model with equal volumes λB that
estimates 22 classes for the finite mixture models when using the EM ML approach or EM MAP
approach with the Integrated Classification Likelihood (ICL) criteria, and 18 classes when using the
proposed non-parametric bayesian clustering. 1

Table 2: Log-likelihood values (divided by 106) and the number of estimated classes obtained for
the whale song data set by using the Expectation Maximization approach with maximization of the
likelihood (ML) approach and with the maximization a posteriori (MAP) approach and the proposed
bayesian parsimonious approach (IPGMM).

EM ML EM MAP IPGMM
Model K̂ log-lik K̂ log-lik K̂ log-lik
λI 60 −2.2198 60 −2.1924 9 −2.3413
λkI 60 −2.1129 60 −2.0858 23 −2.2133
λB 22 −2.1435 22 −2.1339 18 −2.1958
λkB 59 −2.0059 53 −1.9595 11 −2.1900
λDADT - - 34 −2.0815 33 −2.1695
λkDADT 51 −1.9811 - - 24 −2.1589
λkDkAkD

T
k 19 −1.9418 18 −1.9381 15 −2.1234

In the figure 2 we show the spectrograms of the whale songs obtained with the proposed bayesian
non-parametric approach with the most general model λkDkAkD

T
k . We chose to show these spec-

trograms of the whale songs because we obtained the best log-likelihood solution when using the
new method. On the vertical axes the frequency is showed and on the horizontal axes we have the
frames, each frame being represented by 10 ms. As we observe in the table 2 we have 15 clusters
for the λkDkAkD

T
k model when using the infinite Gaussian mixture model, so in figure 2 we show

the 6 spectrograms of the whale songs that the time repass 10 ms.

By classification the whale song data with the infinite gaussian mixture model using the most general
model λkDkAkD

T
k we see in the figure 3 the song that where observed for each observation. The

songs (classes) 8, 12 and 15 are uniformly activated in time, therefore we may figure out that they
are representing the sea noise. Whereas the songs (classes) 10,13 and 14 are clearly conveying
information (low entropy).

5 Conclusion

This work presents a new Bayesian non-parametric approach for clustering. It is based on an infinite
Gaussian mixture with an eigenvalue decomposition of the cluster covariance matrix and a Chinese
Restaurant Process prior. It allows deriving several flexible models and avoids the problem of model
selection in maximum likelihood-based and Bayesian parametric Gaussian mixture. We applied this
method on the Whale song decomposition NIPS4B challenge. The obtaining results highlight the
interest of using parsimonious Bayesian clustering as a good alternative namely to finite parsimo-
nious GMM clustering. We saw that the infinite parsimonious Gaussian mixture model (IPGMM) is

1The missing values for the two state of art models (λDADT model for EM ML and the λkDADT model
for EM MAP) are due to some trobles when executing the em algorithm for this data and are currently being
fixed.
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Figure 2: Spectrograms for the whale songs obtained with the proposed bayesian non-parametric
approach with the most general model λkDkAkD

T
k .

Figure 3: Clusters activities versus time sea noise obtained by IPGMM with λkDkAkD
T
k model

more flexible in terms of modeling and automatically provides a partition of the data and the number
of clusters for the data needed to be clustered.
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